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Abstract: 

In this paper, we illustrate how to value American-style options using the Least-Squares 

Monte Carlo (LSM) approach proposed by Longstaff and Schwartz (2001) and 

investigate whether there exists an optimal regression complexity in the LSM framework 

for options pricing. In particular, we use the smoothing spline in the regression step, 

which allows us to control the regression complexity on a continuous scale with just one 

tuning parameter. Numerical results on American put options indicate that we need to use 

more than a linear regression, but as the regression becomes more complex, the accuracy 

of the LSM method quickly deteriorates. 

 

1. Introduction 

In modern financial markets, one of the most challenging and difficult problems is the 

valuation of American-style derivatives. Numerical PDE method and lattice method are 

widely used to price American-style derivatives, see Tavella (2002, Chapter 6). These 

two methods work backwards. However, in order to apply numerical PDE method, we 

have to restrict our attention to those derivatives with a small number of dimensions (less 

than four state variables). For multi-factor and path-dependent problems, Monte Carlo 

simulation is a nature tool, but it must work in a forward fashion. 

   Longstaff and Schwartz (2001) proposed a simple and powerful method, known as 

Least Squares Monte Carlo (LSM), to value American-style derivatives. By introducing a 

regression step, LSM allows us to use Monte Carlo to solve problems where backward 

induction cannot possibly be avoided. The LSM method is simple, promising and 
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powerful. Only simple least-squares is required.  The two authors claim that the method 

can be applied to most general stochastic processes. 

   This paper is organized as follows: Chapter 2 reviews the LSM method in detail. 

Chapter 3 examines the optimal complexity for the regression step in the LSM algorithm. 

We use nonparametric techniques as a tool to identify the optimal regression complexity. 

Chapter 4 is a short conclusion. 

 
2. Least Squares Monte Carlo Simulation 

Monte Carlo (MC) simulation is an alternative to the numerical PDE method. Boyle 

(1977) is the first researcher to introduce Monte Carlo simulation into finance. The 

method itself is simple and easy to implement. We can simulate as many sample paths as 

desired according to the underlying stochastic differential equation that describes the 

stock process. For each sample path, the option value is determined and the average from 

all paths is the estimated option price. The variance of our estimate is (1/ )NΟ , which 

is independent of the number of stochastic dimensions.  

   For the European option, the MC method works well. In fact, we even have an 

analytical solution, e.g., using the Black-Scholes formula. More importantly, the value is 

determined only by the terminal stock price if one assumes constant interest rate and 

volatility. It is easy to see that Monte Carlo simulation must work in a forward fashion. 

Therefore, even though it is simple and capable of handling multi-factor problems, once 

we have to solve a problem backwards, Monte Carlo simulation becomes awkward to 

implement.  

   There are basically two ways to value American-style options. The first is to 

approximate the early exercise boundary so that we can have the boundary before we run 

simulations. Then, for each sample path, the simulation runs forward until the stock price 

hits the exercise boundary. At the end of the simulation, the averaging process is exactly 

the same as that of the European option. Bossaerts (1989) first proposed this method and 

solved for the optimal strategy by maximizing the simulated value of the option. Tilley 

(1993), Barraquand and Martineau (1995), Broadie and Glasserman (1997), and Carr 

(1998) are other examples of this approach, while the list is by no means complete. These 
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authors applied different techniques to approximate the transitional density function or 

the early exercise boundary. 

   The other approach is similar to what will be presented in this paper. Instead of 

determining the exercise boundary before simulation, this approach focuses on the 

conditional expectation function; see e.g., Carriere (1996), Tsitsiklis and Roy (1999). 

Longstaff and Schwartz (2001) proposed the Least-Squares Monte Carlo (LSM) method, 

an easy way to implement this approach, which will be main focus on this paper. Clement, 

Lamberton and Protter (2001) studied related convergence issues. Tian and Burrage 

(2002) discussed the accuracy of the LSM method. Moreno and Navas (2003) further 

discussed the robustness of LSM with regard to the choice of the basis functions. 

 
2.1 The Valuation Algorithm 

Longstaff and Schwartz (2001) introduce the use of Monte Carlo simulation and least 

squares to value American options. At each exercise time point, option holders compare 

the payoff for immediate exercise with the expected payoff for continuation. If the payoff 

for immediate exercise is higher, then they exercise the options. Otherwise, they will 

leave the options alive. The expected payoff for continuation is conditional on the 

information available at that time point. The authors propose that the conditional 

expectation can be estimated using simulated cross-sectional data by least squares. To 

find out the conditional expectation function, we regress the realized payoffs from 

continuation on a set of basis functions in the underlying asset prices. The fitted values 

are chosen as the expected continuation values. We simply compare these continuation 

values with the immediate exercise values and make the optimal exercise decisions. We 

recursively use this algorithm and discount the optimal payoffs to time zero. That is the 

option price. For details of the algorithm, see Longstaff and Schwartz (2001). 

   Consider an American option, which can be exercised at any time point [ ]0,t T∈ ; we 

have to use discretization to approximate the continuous exercise feature. Suppose we use 

m  time points 1 20 ... mt t t T< ≤ ≤ ≤ = . At maturity, the exercise strategy is the same as the 

European counterpart. If the option is in the money, the investor should exercise it. 

Otherwise, let it expire. Before maturity, the option holder must choose between 

exercising the option and holding it to the next exercisable time. We adopt the notations 
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from Longstaff and Schwartz’s paper. Define a probability space ( , , )F PΩ  and an 

equivalent martingale measure Q. Denote ( , ; , )C s t Tω as cash flows at time s  generated 

by the option for the sample pathω , conditional on the option not being exercised at or 

prior to time t , and on the option holder following the optimal stopping rule for 

all ,s t s T< ≤ . Then the value of continuation at time ( ), ;k kt V tω can be expressed as 

( ) ( )( ) ( )
1

, exp , , ; ,j

k
k

m tQ
k j k tt

j k
V t E r s ds C t t T Fω ω ω

= +

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∫ , 

where ( ),r tω is the riskless interest rate. Within this framework, the problem of pricing 

an American option reduces to comparing the immediate exercise value with this 

conditional expectation. The immediate exercise value is obtained directly from the 

payoff function. The essential task is to determine the conditional expectation. The LSM 

method uses least square regression to find the conditional expectation function 

at 1 2 1, ,...,m mt t t− − . We assume that the unknown function ( ; )kV tω can be represented as a 

linear combination of a countable set of basis functions. The simplest basis function is the 

polynomial function: 

( ) n
nL X X= . 

More complicated choices of basis functions can be the Laguerre polynomials: 

( ) exp( ) ( )
2 !

X n
n X

n n

X e dL X X e
n dX

−= − . 

Other types of basis functions include the Hermite, Legendre, Chebysheve, etc. 

( ; )kV tω can be expressed as 
1

( ; ) ( )k i i
i

V t b L Xω
∞

=

=∑ . 

   Suppose we have only one state variable, e.g., in the case of an American option. We 

estimate the conditional expectation 1( ; )kV tω − by using the first M < ∞  basis functions 

and, borrowing the notation from Longstaff and Schwartz again, denote the 

estimate 1( ; )M kV tω − . It is obtained by regressing the discounted values of 1( , )kC tω − onto 

the basis functions of the state variable for paths that are in-the-money. The fitted value 

1
ˆ ( ; )M kV tω − is the continuation value of the derivative. The immediate exercise value 

*
1( ; )M kV tω − is computed directly from the payoff function. By comparing the two values, 
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we can determine whether it is optimal to exercise the option at 1kt − or to hold it until kt . 

Once the decision at 1kt − is made, we are ready to approximate the cash 

flow 2( , ; , )kC s t Tω − . Then, we move backward recursively to get ( , ; , )C s t Tω for each 

time point 1 20, , ,..., mt t t t T= = and decide the optimal stopping time along the particular 

path considered.  

 
2.2 Valuing American Put Options 

Assume that the underlying asset is a common stock and the dynamics of the stock price 

under the risk-neutral measure is given by     t t t tdS rS dt S dWσ= + . Here r and σ  are 

constants, { }tW is a standard Brownian motion under the measure Q. The analytical 

solution is available: 

2
0

1 exp -  
2t tS S r t Wσ σ⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

The Monte Carlo approach focuses on the Brownian motion and simulates the increment 

of the Brownian motion, which is normally distributed. As for the basis function, we 

choose a constant and the first four terms of the polynomial, or the first four terms of the 

Laguerre polynomials.  

 
2.3 Least Squares Monte Carlo for valuing American put options 

Following Longstaff and Schwartz (2001), we compare numerical PDE and simulation 

values for the early exercise option in an American-style put option on a share of non-

dividend stock. The option can be exercised 50 times per year. The strike price of the put 

is 40; the short-term interest rate is 0.06; the underlying stock price S , the volatility of 

returnσ , and the number of years until the final expiration of the option T  are as listed. 

We simulate 100,000 (50,000 plus 50,000 antithetic) paths for the stock price process. 

The standard errors of the simulation estimates are reported as well. 

   Table 1 below shows that we can obtain fairly accurate results using the LSM method. 

The difference between PDE and LSM is very small. The standard errors are within 1 

cent due to the use of the variance reduction technique, antithetic variates.  
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Table 1: Least Squares Monte Carlo for valuing American put options 

S  σ  T  PDE  
Simulated 
American ( . .)s e  

Longstaff 
Paper 

36 0.2 1 4.478 4.4789 0.0060 4.472 

36 0.2 2 4.840 4.8376 0.0069 4.821 

36 0.4 1 7.101 7.0997 0.0084 7.091 

36 0.4 2 8.508 8.5003 0.0105 8.488 

38 0.2 1 3.250 3.2494 0.0047 3.244 

38 0.2 2 3.745 3.7389 0.0061 3.735 

38 0.4 1 6.148 6.1475 0.0080 6.139 

38 0.4 2 7.670 7.6564 0.0098 7.669 

40 0.2 1 2.314 2.3157 0.0054 2.313 

 

3. Examining Optimal Regression Complexity Using Nonparametric Techniques 

In this chapter, we analyze the effect of the number of basis functions on the valuation 

accuracy and test whether there exists an optimal level of complexity for the regression 

step in the LSM framework. Throughout Chapter 3, we use four American put options as 

our primary examples (Table 2).  

 

Table 2: Examples of American put options 

Examples  S  σ  T  PDE  
Option 1 36 0.2 1 4.478 
Option 2 36 0.4 1 7.101 
Option 3 38 0.2 1 3.250 
Option 4 38 0.4 1 6.148 

 

All of these options can be exercised 50 times per year. All of them have a strike price of 

40. The short-term interest rate is 0.06. We simulate 100,000 (50,000 plus 50,000 

antithetic) paths for each stock-price process. Standard errors are listed in parentheses. 

Our primary measure of valuation accuracy is the percent error: 

-LSMvalue PDEvalue
PDEvalue

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
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  The numerical results with up to 10 polynomial basis functions are listed in Table 3 for 

the four American put options. Longstaff and Schwartz (2001) gave a convergence 

criterion for determining the number of basis functions needed to obtain an accurate 

approximation: simply add more basis functions until the value implied by the LSM 

algorithm no longer increases.  Moreno and Navas (2003) find that, in some cases, the 

option prices do not increase monotonically with the number of basis functions, which 

means Longstaff and Schwartz’s original convergence criterion is difficult to apply. 

Figure 1 plots the percent error vs. the number of basis functions; these plots suggest that 

Moreno and Navas (2003) are right. 

   In addition, we can observe empirically that using more basis functions can actually 

make LSM less accurate! In order to further test the observation that using more basis 

functions can degrade the performance of LSM, we now conduct an experiment in which 

we replace the ordinary least-squares with smoothing splines. 

 
Figure 1: Plots of number of bases vs. percent errors (%) for option 1, 2, 3 and 4.
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Table 3: Effects of the number of basis functions for the four American put options 

Number of  

polynomial 

bases 

Values of  

option 1 

Percent 

Errors 

Values of  

option 2 

Percent 

Errors 

Values of  

option 3 

Percent 

Errors 

Values of  

option 4 

Percent 

Errors 

2 4.4720(0.0064) 0.1340% 7.0882(0.0087) 0.1803% 3.2390(0.0050) 0.3385% 6.1388(0.0081) 0.1496%

3 4.4789(0.0060) 0.0201% 7.0997(0.0084) 0.0183% 3.2494(0.0047) 0.0185% 6.1475(0.0080) 0.0081%

4 4.4837(0.0060) 0.1273% 7.0994(0.0083) 0.0225% 3.2537(0.0047) 0.1138% 6.1452(0.0080) 0.0455%

5 4.4838(0.0060) 0.1206% 7.1021(0.0083) 0.0155% 3.2499(0.0046) 0.0031% 6.1419(0.0079) 0.0992%

6 4.4829(0.0060) 0.1094% 7.1068(0.0083) 0.0817% 3.2512(0.0046) 0.0369% 6.1470(0.0080) 0.0163%

7 4.4838(0.0060) 0.1295% 7.1039(0.0083) 0.0408% 3.2518(0.0046) 0.0554% 6.1445(0.0080) 0.0569%

8 4.4838(0.0059) 0.1295% 7.1089(0.0083) 0.1113% 3.2530(0.0046) 0.0923% 6.1471(0.0080) 0.0146%

9 4.4831(0.0059) 0.1139% 7.1064(0.0083) 0.0760% 3.2512(0.0046) 0.0369% 6.1484(0.0080) 0.0065%

10 4.4825(0.0059) 0.1005% 7.1117(0.0083) 0.1507% 3.2525(0.0046) 0.0769% 6.1523(0.0081) 0.0699%
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3.1 Smoothing Splines  

Polynomials are the approximating functions of choice when a smooth function is to be 

approximated locally. But if a function is to be approximated on a wider interval, the 

degree, n, of the approximating polynomial may have to be chosen unacceptably large. 

The alternative way is to subdivide the interval [a,b] of approximation into sufficiently 

small intervals 1[ .. ]j jξ ξ + , with 1 1... la bξ ξ += < < = , so that, on each such interval, a 

polynomial jp of relatively low degree can provide a good approximation to f . This can 

even be done in such a way that the polynomial pieces blend smoothly, i.e., so that the 

resulting patched or composite function ( )  ( ) js x p x= for 1[ .. ]j jx ξ ξ +∈ , all j , has several 

continuous derivatives. Any such smooth piecewise polynomial function is called a spline. 

The points 1 1 1, ,..., lξ ξ ξ + are called “knots.” For details about splines, see Hastie, Tibshirani 

and Friedman (2001, Chapter 5). 

   Here we focus on a spline basis method called “  smoothing spline ” which avoids 

having to select the knots a priori by using a maximal set of knots. The complexity of the 

fit is controlled by regularization. Consider the following problem: among all functions 

( ) f x with two continuous derivatives, find one that minimizes the penalized residual 

sum of squares 

{ } { }22 ''

1
( , ) ( ) ( )

N

i i
i

RSS f y f x f t dtλ λ
=

= − +∑ ∫ , 

where λ  is a fixed smoothing parameter. The first term measures the goodness of fit 

while the second term penalizes the curvature in the function. The parameterλ establishes 

a tradeoff between the two. Two extreme cases are: 

0λ =  : f can be any function that interpolates the data; 

λ = ∞  : f  must be linear function of x  since no second derivative can be tolerated. 

These vary from the very rough to the very smooth, and the hope is that (0, )λ∈ ∞  

indexes an interesting class of functions in between. It can be shown (see Hastie, 

Tibshirani and Friedman (2001, Chapter 5)) that the solution to the above penalized 

minimization problem is a nature cubic spline with knots at all unique values of ix . 
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3.2 Valuing American Put Options 

Our experiments are conducted using the same four American put options (Table 2). We 

simulate 2,000 (1,000 plus 1,000 antithetic) paths for the stock-price process and use 

different values of the smoothing parameter spar. The smoothing parameter spar here has 

the same effect as the parameterλ  above. When spar is 0, the smoothing spline produces 

the least-squares straight-line fit to the data. When spar is 1, it is the ‘natural’ cubic spline 

interpolant. For details about the smoothing spline, see the help file of Matlab. The 

results are in Table 4 and Figure 2. 

 

Table 4: Valuing American put options using nonparametric regression 

 
S =36 

σ =0.2 
Percent 

Errors 
S =36

σ =0.4

Percent

Errors 

S =38

σ =0.2

Percent

Errors 
S =38 

σ =0.4 
Percent

Errors 

PDE  4.478  7.101  3.250  6.148  

0.01spar =  4.400 1.7418% 6.9973 1.4604% 3.1794 2.1723% 6.0557 1.5013%

0.1spar =  4.3898 1.9696% 6.9814 1.6843% 3.1964 1.6492% 6.0457 1.6640%

0.2spar =  4.3936 1.8848% 6.983 1.6617% 3.1778 2.2215% 6.0577 1.4688%

0.3spar =  4.4224 1.2416% 6.9953 1.4885% 3.1906 1.8277% 6.0852 1.0215%

0.4spar =  4.4272 1.1344% 7.005 1.3519% 3.1945 1.7077% 6.0823 1.0686%

0.5spar =  4.4112 1.4917% 7.0337 0.9478% 3.1969 1.6338% 6.0943 0.8735%

0.6spar =  4.4124 1.4649% 7.029 1.0139% 3.1932 1.7477% 6.088 0.9759%

0.7spar =  4.4221 1.25% 7.0965 0.06% 3.1955 1.68% 6.1316 0.27% 

0.8spar =  4.4376 0.90% 7.0701 0.44% 3.2242 0.79% 6.1554 0.12% 

0.9spar =  4.4495 0.6364% 7.1152 0.2000% 3.22 0.9231% 6.1724 0.3969%

0.99spar =  4.5052 0.6074% 7.2157 1.6153% 3.2768 0.8246% 6.2613 1.8429%
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Figure 2: Plots of values of smoothing parameter spar vs. percent errors (%). 

 

From Figure 2, we can observe empirically that the optimal smoothing parameter is 

around 0.8 on average. This means, in general, a linear fit (spar=1) is not adequate. 

However, the accuracy degrades quickly as we further decrease spar down to 0. This 

means we cannot use a very complex regression model either. 

 
4. Conclusion 

In this paper, we reviewed the use of the Least-Squares Monte Carlo (LSM) method to 

value American-style options and focused on the problem of optimal regression 

complexity in the LSM algorithm. Our main conclusion is that using more basis functions 

does not always improve the pricing accuracy; it can actually degrade the accuracy. Other 

researchers have similarly found that things get worse when you go overboard on 

regressors. For valuing American options, we found that the regression cannot be too 

complex, but that we do need more than a simple linear fit. The tools we used for 
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experimentation are novel. We used a single tuning parameter in smoothing splines to 

control the regression complexity on a continuous scale. This is particularly convenient 

for our purpose, which is to investigate the effect of regression complexity on the 

accuracy of the LSM algorithm. 
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