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Regime-Switching Model

• Market situation may change ⇒ distribution of asset’s return
will change over time

• Regime-Switching model: market environment may switch
among different regimes in a Markovian manner ⇒ distribu-
tion of asset’s return will change over time in a Markovian
manner



Regime-Switching Model

• Options: Di Masi et al. (1994), Buffington and Elliott
(2001), Guo (2001), Hardy (2001)

• Optimal Trading Rules, Optimal Portfolio: Zhang (2001),
Zhou and Yin (2003), Cheung and Yang (2004, 2004)



Model

Discrete-time setting: investor can decide the level of consump-
tion, cn at time n = 0,1,2, . . . , T

After consumption, all the remaining money will be invested in
a risky asset

The random return of the risky asset in different time periods
will depend on the state of a time-homogeneous Markov chain
{ξn}0≤n≤T with state space M = {1,2, . . . , M} and transition
probability matrix P = (pij)



Absorption State — Default Risk

Assume that state M of the Markov Chain is an absorbing state:

pMj = 0 j = 1,2, . . . , M − 1,

pMM = 1.

Default occurs at time n if ξn = M . In this case, the investor
can only receive a fraction, δ, of the amount that he/she should
have received.

The recovery rate δ is a random variable, valued in [0,1]



{Wn}0≤n≤T : wealth process of the investor

Wn+1 =

 (Wn − cn)R
ξn
n (1{ξn+1 6=M} + δ1{ξn+1=M}) if ξn 6= M,

Wn − cn if ξn = M,

n = 0,1, . . . , T − 1, where 1{··· } is the indicator function.

Ri
n is the return of the risky asset in the time period [n, n + 1],

given that the Markov chain is at regime i at time n.



Assumptions

1. The random returns Ri
0, Ri

1, . . . , Ri
T−1 are i.i.d. with distribu-

tion Fi; they are strictly positive and integrable

2. Ri
n is independent of R

j
m, for all m 6= n

3. The Markov chain {ξ} is stochastically independent to the
random returns in the following sense:

P(ξn+1 = in+1, Rin
n ∈ B | ξ0 = i0, . . . , ξn = in) = pinin+1

P(Rin
n ∈ B)

for all i0, . . . , in, in+1 ∈ S, B ∈ B(R) and n = 0,1, . . . , T − 1



Assumptions

4. 0 ≤ cn ≤ Wn (Budget constraint)

5. The recovery rate δ is stochastically independent of all other
random variables



Given that the initial wealth is W0 and the initial regime is i0 ∈
M∗ := M\ {M}, the objective of the investor is to

max
{c0,...,cT}

E0

 T∑
n=0

1

γ
(cn)

γ


over all admissible consumption strategies. Here 0 < γ < 1.

Admissible consumption strategy: a feedback law cn = cn(ξn, Wn)

satisfying the budget constraint

Optimal Consumption Strategy: Ĉ = {ĉ0, . . . , ĉT}



Definition 1 For n = 0,1, . . . , T , the value function Vn(ξn, Wn)

is defined as

Vn(ξn, Wn) = max
{cn,cn+1,...,cT}

En

 T∑
k=n

1

γ
(ck)

γ

 .

Bellman’s Equation:


Vn(ξn, Wn) = max0≤cn≤Wn En[U(cn) + Vn+1(ξn+1, Wn+1)]

n = 0,1, . . . , T − 1
VT (ξT , WT ) = 1

γW
γ
T



Define some symbols recursively:

M(i) = {E[(Ri)γ]}
1

1−γ , i ∈M∗,

L
(i)
0 = 0, i ∈M,

L
(i)
n = M(i)K

(i)
n 1{i6=M} + n1{i=M}, i ∈M, n = 1,2, . . . , T,

K
(i)
1 = [1− piM + piME(δγ)]

1
1−γ , i ∈M∗,

K
(i)
n =


M−1∑
j=1

pij(1 + L
(j)
n−1)

1−γ + piME(δγ)(1 + L
(M)
n−1)

1−γ


1

1−γ

,

i ∈M∗, n = 2, . . . , T.

Note that K
(M)
· ’s are not defined. M(i) is well-defined since we

have assumed that Ri is integrable.



Theorem 1 For n = 0,1, . . . , T , the value functions are given by

VT−n(i, w) =
1

γ
wγ(1 + L

(i)
n )1−γ,

and the optimal consumption strategy Ĉ is given by

ĉT−n(i, w) =
w

(1 + L
(i)
n )

.



From Theorem 1, we see that if we are now at time T − n, and
at regime i, then we should consume a fraction of our wealth
which is equal to

1

1 + L
(n)
i

.

Thus our optimal consumption strategy depends heavily on the
current regime and the remaining investment time through the
function L.



Proposition 1 (a) For fixed i ∈M, L
(i)
n is increasing in n:

0 = L
(i)
0 ≤ L

(i)
1 ≤ . . . ≤ L

(i)
T .

(b) For fixed i ∈M∗, K
(i)
n is increasing in n:

0 ≤ K
(i)
1 ≤ K

(i)
2 ≤ . . . ≤ K

(i)
T .



The monotonicity of L implies at the same regime, we should
consume a larger fraction of our wealth when we are closer to
the maturity.

This strategy is quite reasonable. If we are closer to the matu-
rity, a short-term fluctuation in the return of the risky asset will
bring a loss to us that we may not have enough time to cover.
Therefore, we should consume more and invest less.



Next, we may guess that at any time period, say T −n, if we are
at a “better” regime, then we should consume less and invest
more.

Need two ingredients:

1. A criterion to compare the distributions of the returns in
different regimes =⇒ second order stochastic dominance

2. Market has to “regular” enough =⇒ stochastically monotone
transition matrix



Definition 2 Suppose that X and Y are two random variables
satisfying

E[g(X)] ≤ E[g(Y )]

for any increasing and concave function g such that the expecta-
tions exist, then we say X is dominated by Y in the sense of sec-
ond order stochastic dominance and it is denoted by X ≤SSD Y .



Definition 3 Suppose P = (pij) is an m ×m stochastic matrix.
It is called stochastically monotone if

m∑
l=k

pil ≤
m∑

l=k

pjl

for all 1 ≤ i < j ≤ m and k = 1,2, . . . , m.



Suppose P is a M ×M matrix. Let ek = (1, . . . ,1,0, . . . ,0)′ (i.e.
first k coordinates are 1, the rest are 0) for k = 1,2, . . . , M . Let
DM = {(x1, . . . , xM)′ ∈ RM | x1 ≥ · · · ≥ xM} and P D = {y ∈ DM |
P y ∈ DM}.

Lemma 1 The following statements are equivalent:

1. P is stochastically monotone

2. P D = DM

3. ek ∈ P D for all k = 1,2, . . . , M



Proposition 2 Suppose that the transition probability matrix P

is stochastically monotone and

R1 ≥SSD R2 ≥SSD · · · ≥SSD RM−1.

Assume further that

M(i)K
(i)
1 ≥ 1 ∀i ∈M∗.

Then we have for n = 1,2, . . . , T

L
(1)
n ≥ L

(2)
n ≥ · · · ≥ L

(M−1)
n ≥ L

(M)
n ,

as well as

K
(1)
n ≥ K

(2)
n ≥ · · · ≥ K

(M−1)
n .



Meaning of R1 ≥SSD · · · ≥SSD RM−1

Preference of investor: increasing and concave utility function
+

Return of the risky asset in regime i: Ri

+
Definition of SSD order

⇓
The M − 1 regimes are ranked according to their

favorability to the risk-averse investor:
regime 1 is the most favorable, regime M − 1 is the most unfavorable



Meaning of P being stochastically monotone:

For 1 ≤ i < j ≤ M − 1 (regime i is more favorable to regime j)

•
∑M

l=k pil is the probability of switching to the worst m− k +1
regimes from regime i

•
∑M

l=k pjl is the probability of switching to the worst m−k+1
regimes from regime j

Intuitively, if the market is “regular” enough, we should have

M∑
l=k

pil ≤
M∑

l=k

pjl

for all possible k. This precisely means that P is stochastically
monotone.



Meaning of M(i)K
(i)
1 ≥ 1 ∀i ∈M∗:

If $1 is invested today (regime i), then M(i)K
(i)
1 is the expected

utility of the amount one period later, allowing for default risk.

M(i)K
(i)
1 ≥ 1 ∀ ∈ M∗ means that the risk-averse investor would

prefer the risky asset to a risk-free asset (risk-free interest rate
is zero) in any regimes.



Corollary 1 Suppose that the transition probability matrix P is
stochastically monotone and

R1 ≥SSD R2 ≥SSD · · · ≥SSD RM−1.

Assume further that

M(i)K
(i)
1 ≥ 1 ∀i ∈M∗.

Then for w > 0 and n = 0,1, . . . , T ,

cn(1, w) ≤ cn(2, w) ≤ · · · ≤ cn(M, w).



Effect of Recovery Rate

Proposition 3 Suppose that δ1 and δ2 are two [0,1]-valued ran-
dom variables that are independent of the Markov chain {ξ} and
all the random returns. If

E[δγ
1] ≤ E[δγ

2],

then

cn(i, w; δ1) ≥ cn(i, w; δ2).



Example

• δ1 ∼ U(0,1) −→ E(δγ
1) = 1/(1 + γ)

• δ2 ≡ 1/2 −→ E(δγ
2) = 1/2γ

It is not difficult to show that
1

1 + γ
≤

1

2γ

for 0 < γ < 1, i.e.

E(δγ
1) ≤ E(δγ

2),

hence

cn(i, w; δ1) ≥ cn(i, w; δ2).



THE END
THANK YOU


