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An Option-Based Operational Risk Management on Pandemics 

 

Abstract:  

In this paper, we employ the theory of real option pricing to address problems in the area of 

operational risk management. Particularly, we develop a two-stage model to help firms 

determine the optimal triggers in the event of an influenza pandemic. In the first stage, we 

propose a regime-dependent epidemic model to simulate the spread of the virus, depending on 

whether the firm is active or inactive. In the second stage, we view the reactivation decision as a 

call option and the suspension decision as a put option, and use dynamic programming method to 

determine the optimal switching thresholds. Our numerical experiments suggest that given the 

parameter values in our paper, it is optimal for the firm to suspend the business (or parts of its 

business) when the fraction of infected employees is higher than 18%, and to reactivate the 

operation anytime the fraction drops to 3%. When considering the uncertainty in the future, firms 

are more conservative about the decisions of suspension and reactivation. If the firm incurs 

switching costs, the suspension threshold increases with costs, while the reactivation threshold 

decreases with costs. By implementing policies to control the disease, firms can meet their social 

obligations and in the meantime, increase their values in both regimes.  

 

Key Words: Real Option Valuation, Epidemic Risk, Operational Risk Management, Regime-

Switching Model, Dynamic Programming 
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1. Introduction 

There were totally 31 pandemics occurring in the past 500 years and 3 in the past century, 

of which the 1918-1919 “Spanish flu”, the most severe one, killed up to 50 million people 

worldwide and 500,000 in the United States (Rasmussen 2005, Robert Arnold  et. al. 2006). 

Historic data have shown that influenza pandemics happen with frightening regularity and occur 

every 30 to 50 years. Given this pattern, the possibility of another pandemic attack is not 

considered remote. Ever since the isolated outbreaks of avian influenza in 2003, scientists have 

been particularly worrying about the influenza A (H5N1) virus. The Centers for Disease Control 

and Prevention (CDC) predicts 2 to 7 million deaths and medical treatment for tens of millions 

people even in a moderately severe scenario (Jia and Tsui 2005). The business impacts are 

startling as well. The World Bank estimates if the impacts of a moderately severe pandemic were 

to last for a year, the economic loss would be between $100 to $200 billion for the US, and 

around $800 billion globally (WBEAPR 2005).  

Dynamics of human epidemics is an important topic in epidemiology and mathematical 

biology. An enormous literature has developed in this field, the history of which can be traced 

100 years back to pioneers such as Kermack and McKendrick (1927). Ever since the publication 

of Bailey (1957), mathematical epidemiology has grown overwhelmingly. A wide variety of 

epidemic models have been mathematically formulated, analyzed and empirically fitted (see 

reviews in Dietz 1967, Wick wire 1977, Becker 1978, Dietz and Schenzle 1985, Hethcote 1994, 

etc). Basically, they can be classified into two main streams: deterministic models and stochastic 

models. In essence, the spread of a disease through a given population is a discrete stochastic 

process. Although continuous deterministic models are relatively easy to work with and often 

used to obtain acceptable approximations for relatively large populations, we prefer stochastic 
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models since they can usually provide more information about the intrinsic variability of the 

system.  

Recently, new interest arises in research to use epidemic modeling as decision aids for 

optimal control policies such as immunization, worker furloughs, and quarantines. Based on a 

deterministic epidemic model, Finkelstein et al (1981) construct a decision system under which 

alternative public immunization strategies can be compared. They find that vaccinating the 

population at large is sometimes favored over targeting at the highest-risk groups. Meltzer, Cox, 

and Fukuda (1999) employ Monte Carlo mathematical simulations and reach the same 

conclusion. Jia and Tsui (2005) use SARS as a case study to quantify the impact of various 

control measures. These models, however, only evaluate the effectiveness of control measures on 

pandemics based on national needs, and conduct the cost/benefit analysis from the 

macroeconomic perspective. They provide neither operating instructions for large businesses to 

prepare for pandemic risks, nor any insights as to the triggers for implementing the optimal 

control strategies.  

In the event of influenza pandemics, businesses play an especially important role in 

protecting employees’ health as well as minimizing the economic losses to the whole society. 

Business continuity planning has become a key component of operational risk management. It 

emphasizes the maintenance of critical operations and services during a crisis or a timely 

recovery of business after a disruption. Companies that provide infrastructure services, such as 

power and telecommunications, should devote significant resources to ensure continued 

operations during a crisis. Firms in financial sectors, like banks or insurance companies, also 

have a special responsibility to plan for business continuity and maintain the stability of the 

financial system. In order to assist businesses to plan for the outbreak of a pandemic, the HHS 
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(Department of Health and Human Services) and the CDC have developed a checklist, which 

identifies necessary activities for large businesses to prepare for the impact and establish policies 

for implementation during a pandemic.1 In particular, it requires businesses to “set up authorities, 

triggers, and procedures for activating and terminating the company’s response plan, altering 

business operations (e.g. shutting down operations in affected areas), and transferring business 

knowledge to key employees.”  

This paper is motivated by current concerns about the possible outbreak of avian influenza 

pandemics and the CDC’s instructions for large businesses. Basically, the questions our paper 

addresses are:  

1. In the event of an infectious disease such as an influenza epidemic, should a profit 

maximizing firm continue to operate with the loss of productivity of its employees, or 

suspend the business (or parts of its business) temporarily in order to avoid the contagion?  

2. Does a firm’s intention to maximize its value contradict with its social obligation to control 

the disease? 

3. And most important of all, what are the optimal triggers to implement these strategies?  

In order to answer these questions, we propose a two-stage model in this paper. The 

intuition is straightforward. In the first stage of the model, we adapt a stochastic model to 

describe the dynamics of an epidemic that spreads in a given company (or parts of its businesses). 

The productivity of an employee is reduced once he/she gets infected. The disease will spread 

and the fraction of the infective is increasing over time, which diminishes the revenue of the 

company due to the decrease in average productivity. When the fraction goes above a certain 

high threshold (we call it mothballing threshold in the following), the manager may want to 

                                                 
1 See CDC. 2005. Business Pandemic Influenza Planning Checklist. Available at 
http://www.pandemicflu.gov/plan/business/businesschecklist.html  
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temporarily suspend its business (or parts of its business in the most affected areas) and send 

employees, whether infected or non-infected, back home. The separation of the employees may 

help to control the disease. As long as the fraction of the infective drops to a certain low 

threshold (reactivation threshold), the manager may want to call the employees back to work and 

continue the business. Therefore, a regime-switching model is employed in the second stage to 

determine these optimal switching thresholds. Regime switching model is based on the theory of 

real option valuation and can be solved by dynamic programming methods. I will discuss this in 

more details in the methodology part. 

Our results suggest that given the parameter values in our paper, it is optimal for the firm to 

lay up the business (or parts of its business) when the fraction of infected employees is higher 

than 18%, and to reactivate the operation anytime the fraction drops to 3%. When considering 

the uncertainty in the future, firms are more conservative about the decisions of lay-up and 

reactivation. Upon the condition that firms incur lump sum costs when switching between 

regimes, the sensitivity analysis shows that the mothballing threshold increases with the 

mothballing cost and reactivation cost. On the contrary, the reactivation threshold decreases with 

the costs. By implementing measures to control the disease, firms can increase their values in 

both regimes, and thus meet their social obligations at the same time of maximizing their profits.  

The rest of this paper is organized as follows. In Section 2, we describe the two-stage model 

we are going to use. In Section 3, we discuss the theoretical framework and the methodologies to 

determine the optimal triggers of control policies. In Section 4, we report the numerical results 

and conduct sensitivity analysis. Section 5 is concluding remarks. 
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2. The Two-Stage Regime Switching Model 

In this part, we develop a two-stage model in this paper to determine the triggers for firms 

to activate or terminate the optimal response policy. In the first stage, we use a stochastic model 

to simulate the spread of the virus, which may depend on the regime that the firm is currently in. 

In the second stage, we employ a regime-switching model under uncertainty to determine the 

optimal switching thresholds. It is noteworthy to mention that although we consider the case of a 

manufacturing firm in this paper, the same model can be applied to firms providing critical 

services, such as infrastructure services and financial services. Actually, it is more reasonable to 

regard the firm as a division or parts of a large business that is in the affected areas. 

 

2.1. Stage I: The Regime-Dependent Epidemic Model 

        Almost all the epidemic models share the common feature, that is, dividing the modeled 

population into different groups (passively immune, susceptible, exposed, infective and 

removed), and studying the disease transmission between different groups. In this paper, we 

choose to adapt a simple stochastic epidemic model originally proposed by Bailey (1957) and 

expanded later by Bartholomew (1973) in social science. Noting that the process of the epidemic 

may tie up with the choice the manager makes, we extend the model to two regimes, depending 

on whether the firm is active or mothballing.  

To make the analysis simple, we assume the total number of employees in a given firm 

remains constant during an epidemic. There is no entry into or departure from the working force. 

Moreover, there are no deaths during the epidemic. This assumption may seem strong, but is still 

reasonable. On one hand, the time scale of an epidemic is generally shorter than the demographic 

time scale, the natural deaths are thereby negligible. On the other hand, provided our health care 
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system is advanced enough, any infected employee can get appropriate medical treatment and 

recover from the disease. The possibility of death from the disease is also ruled out.  

We classify the total working force into two categories, susceptible and infective. Although 

the most popular epidemic model is SIR model, we adapt this model by eliminating the removed 

class (R). The class R refers to those who have either died or recovered from the disease and 

thereby acquire immunity from infection. It is not only because the death from the disease is 

negligible based on the arguments above, but also because the recovered people may have access 

to the virus and are likely to get infected again. This recurrence of a disease is particularly 

common under the attack of an influenza pandemic.  

Let ( )S t be the fraction of employees that has an infectious disease at time t . It is obvious 

that ( ) [0,1]S t ∈ , where 0S =  denotes nobody is infected in the firm and 1S =  shows another 

extreme case that all the employees are infected. It is reasonable to assume that the random 

variation is greater in the center region than in the extreme cases, therefore the variance term is 

proportional to (1 )S S− . When the firm is active, the change in ( )S t  usually follows the rule 

such as: 

[ (1 ) (1 )] (1 ) tdS aS S bS c S dt S S dwε= − − + − + − , , , , 0a b c ε >  

where a is the rate of person-to-person transmission inside the company, b the rate of recovery, 

c  the rate of transmission from an external source,ε  a small positive constant, and tw  a standard 

Brownian motion.  

Firms can use some control policies to alter the value of parameters, such as a , b  and c , and 

reduce the spread of the contagion. For instance, when the epidemic breaks out, the firm can 

adopt some immunization programs to lower the rate of transmission between the infective and 

the susceptible. When some employees in the company get infected, the manager can screen the 
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suspected infective and mandate the immediate full-paid leave. Furthermore, if the number of the 

infective increases and hits a predetermined point, the firm can temporarily close the business 

and send all the employees back home. In this way, the access of person-to-person transmission 

is cut off. The contagion will be controlled and the infective will recover from the disease with a 

higher recovery rate d . Assuming the external transmission rate and the random variations 

remain the same, the dynamics of the disease turns out to be: 

[ (1 )] (1 ) tdS dS c S dt S S dwε= − + − + − , , , 0d c ε >  

where 0d b> > is the recovery rate when the workers stay at home.  

To conclude, the epidemic model can be described as: 

( , ) ( , ) tdS S r dt S r dwμ σ= + , 

where we denote by r the regime of the firm ( 1r =  if the firm is in suspension and 2r =  if the 

firm is active ). Obviously, we have  

(1 ) (1 ), 2
( , )

(1 ), 1
aS S bS c S r

S r
dS c S r

μ
− − + − =⎧

= ⎨− + − =⎩
  and ( , )S rσ = (1 )S Sε − . 

 

2.2. Stage II: Regime-Switching Model 

Suppose that the manager cannot tell if an employee is infected individually (it may be due 

to lack of expertise, or too costly to do so), but he has some technique that can help him know 

the fraction of the infective ( )S t .2  As mentioned before, the manager wants to determine two 

optimal switching thresholds, HS  and LS , such that if ( )S t is above HS , the manager suspends the 

                                                 
2 For example, he may use daily released data of disease cases, outpatient visits or hospitalization in this affected 
region to obtain a proxy of the fraction, which is acceptable especially when the disease is spreading rapidly in the 
region.  
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production temporarily and offers full-paid leave for all employees3, and if ( )S t is lower than LS , 

the manger calls back all the employees and reactivates the production. We make the above 

assumptions in order to avoid adverse selection and moral hazard problem. Otherwise, some of 

the infective will pretend to behave normally if they cannot get paid during the suspended period, 

and the non-infected employees will pretend to be infected in order to enjoy more leisure without 

being detected.  

We normalize the productivity of a non-infected employee to unity, and assume that the 

productivity will drop to a given level 1α <  once the employee gets infected. N is the total 

number of employees in the company. The price of the product, P , can be viewed as given, 

because we only consider one firm in a competitive market. The variable cost and fixed cost are 

denoted by C  and K , respectively. (Note wages for the workers are contained in the fixed cost 

K  because we consider full-paid leaves.)  In addition, there is a penalty cost E  to the firm for 

every infected employee when the firm is in active regime. The penalty cost may come from the 

employees’ complain and reluctance to work, or the firm’s loss of reputation in the future. 

Therefore the cash flow function can be defined as: 

⎩
⎨
⎧

=−
=−−−−+

=
)(1,

)(2,)]()1([
),(

inactiverK
activerESNKCPNSSN

rSf
α

 

Suppose there is a lump-sum cost of M when the firm is switching from the active to 

mothballing regime, and the reactivation cost is R  when the firm resumes operation. The cost 

matrix is hence defined as 
0

0
M

C
R

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 4 

                                                 
3 The full-paid leave is also suggested by the HHS and CDC in the Business Pandemic Influenza Planning Checklist.  
4 To avoid the possibility of “an infinite money machine”, we assume 0R M+ ≥ .   
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The manager desires to maximize the expected discounted payment less any switching costs 

incurred over an infinite time horizon, by choosing the optimal regime at each moment. That is,  

1 1 10

max ( , ) ( , )
ij
k

m m
tt

t t ij
k i j

V S r E e f S r dt e Cρρ
∞ ∞

−−

= = =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑∑∑∫  

where ij

kt  are the times at which the agent switches from regime i  to j . 

 

3. The Methodology: Real Option Valuation and Dynamic Programming Method 

The theoretical framework of the regime-switching model is based on real option valuation. 

Mossin (1968) launched the first discussion on this issue, followed by Brennan and Schwarz 

(1985) and Dixit (1989) who present the formal and complete regime-switching model. Based on 

the contingent claim theory, as McDonald and Siegel (1986) have done, Brennan and Schwarz 

apply the Black-Scholes-Merton formula to evaluate the active and inactive firms. They argue 

that the inactive firm has the option to invest and its value is equivalent to the value of this call 

option, with strike price equal to the entry cost. Likewise, the active firm has the option to exit 

the market and its value is determined by the current profit and the option to abandon. 

Considering the value-matching conditions and the smooth-pasting conditions, Dixit (1989) 

further obtains a pair of price thresholds for the entry and exit decision. During the 1990’s, the 

baseline Dixit’s model was extended in many directions. Allowing the possibility of laying-up or 

scrapping the project, Dixit and Pindyck (1994) consider four prices thresholds for investment, 

laying-up, reactivation and scrapping. Ekern (1993) relaxes the extreme assumption of complete 

irreversibility, and assumes restricted number of switches between states. Brekke and Oksendal 

(1994) introduce diminishing production capacity over time into the model and solve the model 

as a special case of sequential optimal stopping problem. Bar-Ilan and Strange (1996) consider 
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the time delay between the decision to invest and the start of the production, and include one 

more state of nature (under construction) into the model.  

        Practically, the regime-switching model can be solved by dynamic programming methods. 

Miranda and Fackler (2002) and Fackler (2004) have a detailed discussion on this issue. Suppose 

that there are m  regimes (i.e., {1,..., }r m= ). The agent obtains a reward of payments ( , )f S r per 

unit time, which depends on both the discrete regime variable r  and on a continuous state 

variable S . The dynamics of the state variable S can be described by  

tdWrSdtrSdS ),(),( σμ += . 

The agent can move from regime i  to j  at a cost of ijC , but there is no cost to remain in the 

current regime, i.e., 0iiC = . The discount rate is ( )Sρ .  

In the interior of the no-switch regions, we have the so-called Feynman-Kac equation: 

21( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2S SSS V S r f S r S r V S r S r V S rρ μ σ= + +  

The economic intuition underlying this condition is easier to understand if we rewrite the 

Feynman-Kac equation into the following form: 

[ ( , )]( ) ( , ) ( , ) dE V S rS V S r f S r
dt

ρ = +  , 5 

                                                 
5. By Ito’s lemma, the expected rate of appreciation of the asset ( , )V S r is  

1( , ) ( , ) ( , )
2S S Sd V S r V S r d S V S r d S d S= +  

21( , )( ( , ) ( , ) ) ( , ) ( , )
2S t S SV S r S r d t S r d w S r V S r d tμ σ σ= + +  

21( ( , ) ( , ) ( , ) ( , ) ) ( , ) ( , )
2S S S S tS r V S r S r V S r d t S r V S r d wμ σ σ= + +  

Taking expectation and dividing both sides by dt , we get 
2[ ( , ) ] 1( , ) ( , ) ( , ) ( , )

2S S S
d E V S r S r V S r S r V S r

d t
μ σ= +  

Plugging above equation into the Feynman-Kac condition, we have 
[ ( , )]( ) ( , ) ( , ) d E V S rS V S r f S r

d t
ρ = +  
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which means the total rate of return in regime r equals the current reward ( , )f S r  plus the 

expected rate of capital appreciation [ ( , )]dE V S r
dt

.  

At the boundary point S∗ , supposing it is optimal to switch from regime r  to regime q , the 

value function must satisfy two conditions at such a point. The first is value-matching condition, 

which will hold no matter whether the switching points are optimal or not. Namely, the value 

before switching must be equal to the value after switching less the switching cost. 

* * *( , ) ( , ) ( )rqV S r V S q C S= −  

The second is smooth-pasting condition that is satisfied at the optimal switching points, that 

is, the marginal values before switching must equal the marginal value after switching minus the 

marginal cost of switching. 

* * *( , ) ( , ) ( )S S rqV S r V S q C S′= −  

Optimal switching models generally require numerical approximations. We can 

approximate the value function by a family of approximation functions, i.e., ( , ) ( )r rV S r Sφ θ≈ , 

where ( )r Sφ defines a set of n  basis functions and rθ  is a vector of coefficients in regime r . If 

we take the switching points as given, the values of rθ  can be obtained by solving the Feynman-

Kac equation  

),()],(),(
2
1),(),()([ 2 rsfrsrsrsrss iriiiiir =′′+′− θφσφμρφ  

at a set of nodal values is , along with the non-optimality side conditions. And the optimality 

conditions can be used to solve the switching points by a root-finding algorithm.  
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4. Numerical Analysis 

The calibration of the parameter values in this model proves to be difficult. We choose the 

disease parameter values that are both compatible with the empirical influenza pandemic data 

and based on the suggestions in other empirical works. Finkelstein et al. (1981) set the person-to-

person transmission rate to be 0.75 in their paper. In order to reflect scientists’ concern that the 

H5N1 virus will evolve in a way that allows for efficient human-to-human transmission, we set 

the transmission rate a  at 1 in this paper. As to the recovery rate, it is defined as the reciprocal of 

the average number of days of the infective period. The commonly reported duration of influenza 

ranges from 1 to 5 days, therefore the recovery rate should change from 0.2 to 1. We select the 

recovery rate in the active regime (b ) to be 0.4 and that in the mothballing regime ( )d  equal to 

0.6 to indicate that the recovery rate should be higher when workers are separated from each 

other. The values of external transmission rate c  and the volatility coefficient ε  are selected 

based on Cobb (1998), where he suggests 02.0=c  and 0.1ε = . 

The values of the other parameters used in this paper are set as follows. We choose these 

values both for making economic sense and for making the sensitivity analysis in the later 

session more evident: 6 

Discount rate: 0.05ρ =  

Productivity of an infective: 0.5α =  

Total number of employees: 1000=N  

Price of product: 3P =  

Variable cost: 1C =  

                                                 
6 For example, we could choose a relatively bigger value for the switching costs. At this time, our economic rational 
on the sensitivity analysis is still correct. However, we may get a zero reactivation threshold and it remains 
unchanged when we try to increase the switching cost. We, therefore, may not see the expected effect of increasing 
the switching costs.  
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Penalty cost: 5E =  

Fixed cost: 150K =  

Mothballing cost: 300=M  

Reactivation cost: 300=R  

 

4.1. The Stationary Probability Distribution of the Epidemic Process 

People are concerned what will happen to the disease if no action is taken, i.e. no regime 

switching and no other controls. Will it spread over the population or die out gradually? What’s 

the possible fraction of people who are infected by the disease? In order to answer these 

questions, we need to examine the distribution of )(tS  and get some statistical information. 

Recall the variable we are interested in, )(tS , behaves according to a stochastic differential 

equation:  

tdWSdtSdS )()( σμ += , 

where )1()1()( ScbSSaSS −+−−=μ  and )1()(2 SSS −= εσ  

The probability density function of such a random variable depends not only on the random 

variable itself but also on time t , i.e. ),( tSf . The evolution of the probability density function is 

presented in the form of a partial differential equation: 

)),()(()),()((),( 2
2

2

tSfS
S

tSfS
St

tSf σμ
∂
∂

+
∂
∂

=
∂

∂  

Generally speaking, an explicit solution to this equation is not available. We, therefore, turn 

to the stationary probability density function when the process reaches the equilibrium (i.e. 

when 0),(
=

∂
∂

t
tSf ). Wright (1938) has developed a formula to calculate the stationary probability 

density function: 
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⎭
⎬
⎫

⎩
⎨
⎧

= ∫
∞−

S

dx
x

x
S

Sf
)(

)(exp
)(

)( 22 σ
μ

σ
ψ , 

where ψ  is a constant such that 1)( =∫
∞

∞−

dssf  

As in our example, 
⎭
⎬
⎫

⎩
⎨
⎧

−
−+−−

−
= ∫

S

dx
xx

xcbxxax
SS

Sf
0 )1(

)1()1(exp
)1(

)(
ε

ψ  

εεεψ //1/1 )1( axbc eSS +−+− −=  

Figure 1: stationary probability density function 

 

        In Figure 1, the points 1s  and 2s  are the antimode and mode of the stationary probability 

density function respectively7, and have important economic meanings. The antimode indicates a 

                                                 
7 By solving the equation 0)( =′ Sf , we can get the antimode acdds /)(2

1 −−−= ε , 

mode acdds /)(2
2 −−+= ε , where acbad 2/)2( ε+−−=   
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threshold beyond which the epidemic is likely to spread, while the mode is the most likely 

fraction of the infective in the whole population. For the parameter values set in this paper, we 

obtain %51.121 =s and %85.652 =s . The epidemic is unlikely to spread unless more than 

12.51% of the workers are infected. And it is most likely that 65.85% of the population will get 

infected once the epidemic spreads.  

 

4.2. Effect of Uncertainty: Stochastic versus Deterministic  

Based on the MATLAB implementation proposed by Fackler (2004), we solve the above 

regime-switching problem by dynamic programming. The value functions and marginal value 

functions are displayed in Figure 2 and 3. 

        Given the parameters above, it is optimal for the firm in the active regime to close the 

business temporarily when the fraction of infected employees is higher than 18%. In the inactive 

regime, however, it is optimal to reactivate anytime the fraction drops to 3%. If there is no 

uncertainty in regard to the dynamic of the epidemic, i.e. 0=ε , the epidemic model in stage I 

becomes deterministic. The corresponding thresholds are 23% and 6% respectively, by our 

calculation.  

We can see firms are more conservative about the decisions on suspension and reactivation 

when they take into account the uncertainty in the future: in the stochastic case, firms tend to 

suspend the business even when the fraction of infected employees is 5 points lower than that in 

the deterministic case, and won’t come back to operation until the fraction drops by 3 points 

below 6% (the reactivation threshold in the deterministic case).   
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Figure 2: Value Function of the Stochastic Model 

 

Figure 3: Marginal Value Function of the Stochastic Model 
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4.3. Effect of Switching Costs on Switching Thresholds 

Our next interest is to examine effects of changing the mothballing cost and reactivation 

cost on the change of the two thresholds.  

Table 1: Effect of changing switching costs 
 

Initial parameters 
M=300, R=300 

Mothballing threshold 
( HS  =18%) 

Reactivation threshold 
( LS =3%) Conclusion 

M=400, R=300 19% 2% HS   increases with M,  

LS  decreases with M 

M=300, R=400 19% 2% HS  increases  with R  

LS  decreases with R 
 

       First, let us consider the impact of an increase in the mothballing cost. As was shown in 

Table 1, the mothballing threshold HS  increases to 19% and the reactivation threshold LS  drops 

to 2%, when M  rises to 400 and R  remains at the original level. At the first glance, the change 

of the mothballing threshold is more understandable: when the mothballing cost increases, the 

firm needs to pay more when it switches to the inactive regime. Thus, the manager is more 

reluctant to suspend the business, and the mothballing threshold HS  increases as a result. The 

influence of the mothballing cost on the reactivation threshold LS  might need further 

consideration. Intuitively, the increase in the mothballing cost M decreases the reactivation 

threshold LS according to the mirror image effect: the firm might reactivate the production with 

less willingness if it has to pay a large amount of lump sum cost once again when the fraction of 

the infective increases in the future, otherwise it would rather stay in the mothballing regime.   

        Similarly, if we increase the reactivation cost R  to 400 while keeping M  unchanged, the 

reactivation threshold LS  drops to a lower level, 2%. This is consistent with our prediction that 

the reactivation threshold LS  decreases with the reactivation cost R , because the firm is more 
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reluctant to reactivate the production as the reactivation cost increases. Notice that the increase 

of reactivation cost also has an effect on the mothballing threshold: the mothballing threshold HS  

increases to 19%. That’s because the firm lays up the production with some reluctance to lose its 

option value. Considering the possibility that the fraction of the infective might drop in the near 

future, the firm could avoid paying the reactivation cost again by remaining in the active regime. 

Therefore, the larger is the reactivation cost, the larger is the option value and the greater is the 

reluctance to suspend. 

The following graphs might help us observe the comparative results more clearly. In Figure 

4, I keep the reactivation cost R unchanged and increase the mothballing cost M from 300 to 

700. The switching costs changes like a step function. The mothballing threshold HS  increases 

from 0.18 to 0.19 when M  rises to 370, to 0.20 when M  is 530, and to 0.21 when M  reaches 

690. The reactivation threshold LS decreases from 0.03 to 0.02 when M  arrives at 340, and 

keeps constant afterwards.  

Figure 5 shows the effect of the reactivation cost on the switching thresholds. We can see 

that the increase of the reactivation cost R  almost leads to the same results as in Figure 4, except 

that the mothballing threshold HS  increases to 0.21 after R  is 700. 
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Figure 4: Effect of Increasing the Mothballing Cost 

 

Figure 5: Effect of Increasing the Reactivation Cost 
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4.4. Effect of Disease Control Strategies 
 

One of the purposes of modeling epidemics is to provide a rational basis for policies 

designed to control the spread of a disease. A firm could adopt different strategies which aim to 

alter the parameters in the epidemic model, so that the disease could be controlled. For instance, 

the firm could reduce the infectious contagion among its employees by adopting internet 

conference and phone meetings. It can screen the suspected infective and mandate an immediate 

leave for those who are thought to pose a risk. It could immunize some or all of the employees 

by vaccination. It can also initialize an information session to raise public awareness of higher 

disease prevalence and inform its employees of some preventive measures. All these control 

strategies are aiming at: 

1. decreasing a , the rate of person-to-person transmission.  

2. increasing b , the rate of recovery.   

3. decreasing c , the rate of external transmission.  

Interestingly, firms can implement these control policies at little cost, but can benefit a lot 

from these strategies. As shown in Figure 6, when the firm adopts some strategies to decrease the 

rate of person-to-person transmission a  from 1 to 0.8, the value of the firm increases 

significantly in both regimes. Similar results can be obtained if we increase the rate of recovery 

b or decrease the rate of external transmission c (see Figure 7 and 8, respectively). Therefore, 

firms could maximize their values at the same time of meeting their social obligations of disease 

control.  
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Figure 6: Effect of Decreasing the Person-to-person Transmission Rate 

 

Figure 7: Effect of Increasing the Recovery Rate 
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Figure 8: Effect of Decreasing the External Transmission Rate 

 

 

5. Conclusion and Discussion 
 

Dynamics of human epidemics is an important topic in epidemiology and mathematical 

biology. An enormous literature has developed in these fields, but it seems that little of it 

addresses epidemic risks facing private enterprises with large numbers of employees. Epidemic 

models may provide some insights as to the effectiveness of control measures such as 

immunization, worker furloughs, and quarantines. Modeling may lead to optimal rules for 

implementing these strategies. In this paper, we build a stochastic model to simulate the spread 

of an infectious disease, which is regime-dependent, and use the fraction of the infective in a 

given firm as a decision aid to construct an optimal control strategy. Dynamic programming is 

introduced and the switching points are found by numerical approximation.  
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Given the parameters set in our paper, the firm should suspend the business (or part of its 

business) when the infected workers account for 18% of the total work force, and reactive the 

operation as long as the fraction of the infective drops to 3%. Certainly, these triggers of 

suspension or reactivation are firm-specific: they rely on many factors involved in this model and 

are different for different firms. However, the economic rationale is universal. When faced with 

uncertainty in the future, firms are more conservative about the decisions of suspension and 

reactivation. If firms have to incur lump sum costs when switching regimes, the mothballing 

threshold increases with the switching costs, no matter it is mothballing cost or reactivation cost, 

and the reactivation threshold decreases with the costs.  

In order to avoid the spread of the disease, we need to implement different strategies to 

decrease the rate of person-to-person transmission, increase the rate of recovery, or decrease the 

rate of external transmission. While these strategies aim at the control of the epidemic, the firms’ 

value is also increasing in both regimes. Thus the social interests are in line with firms’ own 

benefits. Disease control and firms’ value maximization could be obtained simultaneously in our 

model. 
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