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BOUNDS FOR RUIN PROBABILITIES AND VALUE AT RISK

ABSTRACT. In many situations, complete information about a rare event is not available,
meaning the underlying probability distribution is not completely specified. This paper
finds the best one can do when the incomplete information consists of estimates of the
first two moments of the distribution. These are called semiparametric lower and upper
bounds. We consider value-at-risk (VaR) in the sense that we find bounds on probability of
portfolio return less than some small value, given only the first two moments of the portfolio
components. We also apply semiparametric bounds to a rare event hitting an insurer for
which losses are extraordinary high and investment income is low. We refer to this as “ruin”
although the company may survive; it is just a convenient way to describe a rare event that
would threaten a company’s solvency. In addition, we calculate bounds on insurance stop-
loss payments. The payoff of a call or put option can be considered as a special case or
a transform of the stop-loss payment. In order to numerically solve the semiparametric
bounds considered here, we reformulate the corresponding semiparametric bound problem
as a sum of squares (SOS) program. A SOS program is an optimization problem where
the variables are coefficients of polynomials, the objective is a linear combination of the
variable coefficients, and the constraints are given the polynomials being SOS. This form of
reformulation allows us to use one of several readily available SOS programming solvers to
solve the moment problem. For the stop-loss bound problem, Cox (1991)’s method is also
investigated to confirm our SOS program solutions. Our numerical examples have shown
that our technique works reasonably well.

1. INTRODUCTION

Sometimes, rare things happen and the least expected occurs. Indeed, some events occur once or
twice in a lifetime — leaving little room to learn from experiences. In financial markets, extreme
events, no matter how rare, could have a profound impact on a company or even the whole country
(Liu, Pan, and Wang, 2005). One such example is the Asian currency crisis of 1997, largely
attributed to over-expansion of corporate credit with un-hedged short-term borrowing from abroad;
large amounts of unproductive capital investments; and speculation on overvalued assets and large
trade deficits (Hong, 1998). In 1997, the value of Thai baht fell by 48.49%, Korean won dropped
47.46% and Malaysian ringgit fell by 35.36%.

Insurers are also not free from the impact of catastrophic large-scale extreme events. For exam-
ple, the total loss of the tragic September 11 terrorist attacks exceeded $80 billion with the insured
losses amounting $40.2 billion (Yu and Lin, 2007). As for mortality risks, a recent example of
unanticipated catastrophe death losses is the devastating earthquake and tsunami across southern
Asia and eastern Africa in December 26, 2004. The 2004 Indonesian population death index in-
creased by 16.58% relative to the 2003 level (Cox, Lin, and Wang, 2006). The excess population
mortality death rate is even higher for Sri Lanka, about 34%. Cummins and Doherty (1997) raise
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2 BOUNDS FOR RUIN PROBABILITIES AND VALUE AT RISK

concerns about the financial stability of the insurance industry before these recent catastrophic
event, so the concern is even greater now.

As a result, with pervasive economic and financial revolutions sweeping our world and potential
devastative catastrophes, the increasing interest in tail risk management is fuelled by practical is-
sues, including investment downside risk and insurance catastrophe risk. Managing extreme losses
caused by catastrophic events like U.S. stock market crash in 1929, hurricanes and earthquakes
has been a major concern for market participants. Thus, developing statistical techniques to model
extreme investment and insurance losses is certainly a major task for risk managers.

Unfortunately, our knowledge about the true distribution is limited. As such, increasing effort
has been made to incorporate moment methodology into analysis without distribution assumptions.
Among the first applications of the moment problem approach to practical problems were done
by Scarf (1958) (inventory management) and Lo (1987) (mathematical finance). In particular,
existing applications of moment theory in finance focus on option pricing to extend the well-
known Black and Scholes (1973) formula (Merton, 1973; Perrakis and Ryan, 1984; Levy, 1985;
Ritchken, 1985; Lo, 1987; Boyle and Lin, 1997; Bruckner, 2007; Gerber, Shiu, and Smith, 2007;
Schepper and Heijnen, 2007) and other asset pricing and portfolio problems (Gallant, Hansen, and
Tauchen, 1990; Hansen and Jagannathan, 1991; Ferson and Siegel, 2001, 2003). Brockett and Cox
(1985); Cox (1991); Brockett, Cox, and Smith (1996) and Roos (2007) apply moment method in
insurance. Bertsimas and Popescu (2005) give a review of the literature and historical perspective
on this method, which covers developments from Chebyshev and Markov in the late 1800s to
break-throughs in the last 10 years. However, very few papers use the moment method to study
extreme financial and insurance events. Traditional statistical methods based on the estimation of
the entire density are inappropriate for such tasks because these methods typically produce a good
fit in those regions in which most of the data reside but at the expense of good fit in the tails (Hsieh,
2004). Therefore, the purpose of our paper is to apply moment methods to estimate the joint events
such as concurrent extreme investment loss and insurance loss.

A novel aspect of this article is that it takes into account the correlation between different assets
and insurance lines of business. Usually, models on risk-based capital and enterprise risk man-
agement decisions involve several random variables, such as losses, stock prices, interest rates,
currency exchange rates and so on. There is an active interest in obtaining information on ex-
tremes of joint distributions of these random variables. For example, the insurer would like to
know the probability of having a large loss payments exceeding a given threshold and a loss in
their asset investment below a certain level at the same time. Therefore, the aim of the present
paper is to explicitly solve the upper and lower bounds on the probability of such a joint event,
given the first two sets of moments of the joint distribution. In other words it involves not only the
variances of the individual asset returns and/or insurance margins but also their covariances.
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In particular, suppose that X1 and X2 denote random variables in a model such as a random
investment return and a random future insurance benefit payment. The variables may be depen-
dent. For example, if the loss payment is subject to economic inflation, then it is correlated with
investment return and the discount factor. In another example, the variables X1 and X2 may be
security returns such as S&P 500 and Nikkei Index returns respectively. A risk manager might be
interested in measuring the joint distribution of extreme values of X1 and X2. That is, X1 and X2

simultaneously take very high values. A third example comes from a stop-loss payment φ(X1, X2)

with the form

(1) φ(X1, X2) =


b if X1 +X2 ≥ a+ b

X1 +X2 − a if a ≤ X1 +X2 ≤ a+ b

0 if X1 +X2 ≤ a.

Since the maximum claim amounts b will be paid when X1 +X2 ≥ a+ b, the reinsurer may want
to know something about his expected payments. One way to estimate these measures is to use the
observations of X1 and X2 to derive parameters of an assumed distribution (typically joint normal)
and then reach an extreme measure of the joint distribution. In many instances, however, the low
frequency of observations for X1 and X2 means that it is impossible to reach sound conclusions
with the parametric approach. Even if a plenty of observations of X1 and X2 are available, for ex-
ample, given day-to-day price observations, assuming a particular distribution for joint distribution
of X1 and X2 might be perilous, specially when we are interested in estimating extreme joint dis-
tributions such as tail probabilities and value at risk (VaR). In fact, strong erroneous assumptions
like this have lead to the failure of at least one hedge fund (e.g. the bankruptcy of the Long-Term
Capital Management).

To address this problem, instead of assuming full knowledge of the distributions of the random
variables of interest, to estimate extreme characteristics of the joint distribution, here, we show
how to numerically compute upper and lower bounds on the probabilities Pr(w1X1 + w2X2 ≤
a) and Pr(X1 ≤ t1 and X2 ≤ t2) for some appropriate values of t1, t2, w1, w2, a ∈ R, when
assuming only up to the second order moment information (means, variances, and covariance) and
the support of X1 and X2. Bounds on the stop-loss payment φ(X1, X2) are also computed for
some levels of a, b ∈ R+ given certain supports and moments. These types of bounds are usually
called semiparametric bounds (in recent related literature) or generalized Chebyshev inequalities
(in classical probability theory).

The computation of semiparametric bounds is a classical probability problem (Karlin and Stud-
den (1966); Vandenberghe, Boyd, and Comanor (2007); and Zuluaga and Peña (2005)). As a
consequence, many related results come from different areas, such as finance, risk management,
inventory theory, stochastic programming, supply chain management, and actuarial science. They
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are also widely used in other areas when complete information about the random variables of in-
terest is unknown. For example, consider the work of Lo (1987); Grundy (1991); Boyle and Lin
(1997); Bertsimas and Popescu (2002); Bertsimas and Sethuraman (2000); Cox (1991); Brock-
ett et al. (1996); Bertsimas, Natarajan, and Teo (2006); Dokov and Morton (2005); Gallego and
Moon (1993); Scarf (1958); Yue, Chen, and Wang (2006); and the references therein. Generally,
semiparametric bounds are robust bounds that any reasonable model must satisfy. Moreover, they
provide a mechanism for checking the consistency of models, as well as an initial estimate for
cumulative probabilities regardless of any model specifications.

The remainder of the article is organized as follows. In Section 2, we formally state the semi-
parametric bound problems considered here. Furthermore, we outline the key well-known results
that will be used in Section 3. Section 3 shows how the desired semiparametric bounds can be nu-
merically computed with readily available optimization solvers. In Section 4, we present relevant
numerical experiments to illustrate the application of our results. Section 5 is for our conclusions.

2. PRELIMINARIES AND NOTATION

Throughout the article, we focus on numerically solving joint semiparametric bound problems
of the form:

(2)

p (or p) = sup (or inf) Eπ(φ(X1, X2))

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in D,

for relevant choices of the (given) function φ(X1, X2). In problem (2), µi, µ
(2)
i , i = 1, 2, and

µ12 denote the given first and second order non-central moments of the random variables X1, X2

(which can be readily obtained from mean, variance, and covariance information on X1, X2), and
D ⊆ R2 denotes the given support of X1, X2. Thus, problem (2) maximizes (or minimizes) the
expected value Eπ(φ(X1, X2)) :=

∫
D φ(x1, x2)dπ over all joint probability distributions π with

support in D ⊆ R2.
In particular, given w1, w2, a ∈ R, we compute semiparametric bounds on Pr(w1X1 + w2X2 ≤

a), for random variables X1 and X2, by setting φ(X1, X2) = I{w1X1+w2X2≤a}, and D = R2; where
IS is the indicator function of the set S. Similarly, given t1, t2 ∈ R+ and non-negative random
variablesX1 andX2, we compute semiparametric bounds on the probability Pr(X1 ≤ t1 and X2 ≤
t2), by setting φ(X1, X2) = I{X1≤t1 and X2≤t2}, andD = R+2. Finally, given a, b ∈ R+, we compute
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semiparametric bounds on a stop-loss payment φ(X1, X2) in the form of equation (1), for non-
negative random variables X1 and X2.

Let p (p) be the optimal objective value of the sup (inf) version of problem (2). Notice that
with the values of p and p, we obtain a “100% confidence interval” p ≤ Eπ(φ(X1, X2)) ≤ p on the
expected value of φ(X1, X2) for all models of the joint distribution ofX1, X2 given some moments
and support.

In order to numerically solve the semiparametric bounds considered here, we will reformulate
the corresponding semiparametric bound problem (2) as a sum of squares (SOS) program (cf. Pra-
jna, Papachristodoulou, and Parrilo (2002) and the references therein). A detailed discussion about
SOS programming is outside the scope of this article. However, let us mention that (informally) a
SOS program is an optimization problem where the variables are coefficients of polynomials, the
objective is a linear combination of the variable coefficients, and the constraints are given by the
polynomials being SOS. A polynomial p(x1, . . . , xn) :=

∑
i1,...,in∈N y(i1,...,in)x

i1
i · · ·xin

n is said to be
a SOS if p(x1, . . . , xn) =

∑
i qi(x1, . . . , xn)2 for some polynomials qi(x1, . . . , xn). The advantage

of reformulating problem (2) as a SOS program is that the reformulation can be readily solved
by some SOS programming solvers such as SOSTOOLS (cf. Prajna et al. (2002)), GloptiPoly
(cf. Henrion and Lasserre (2003)), or YALMIP (cf. Löfberg (2004)). It is worth mentioning that
any SOS program can be reformulated as a semidefinite program (SDP) (cf. Todd (2001), Parrilo
(2000), and the references therein). In fact, SOS programming solvers work by reformulating the
SOS program as a SDP, and then using SDP solvers such as SeDuMi (cf. Sturm (1999)). However,
the SDP formulations of SOS programs can be fairly involved. To make it easy to reproduce our
results, throughout the article we implement SOS programming tools instead of directly reformu-
lating problem (2) as a SDP.

In order to obtain the desired SOS programming formulations, we will make use of the following
well-known results about positive polynomials (cf. Prestel and Delzell (2001)).

Theorem 1 (Hilbert (1888)). Let p(x1, . . . , xn) be a quadratic polynomial. Then p(x1, . . . , xn) ≥
0, ∀ x1, . . . , xn ∈ R if and only if p(x1, . . . , xn) is a SOS polynomial.

Theorem 2 (Diananda (1962)). Let p(x1, . . . , xn) be a quadratic polynomial. If n ≤ 3, then
p(x1, . . . , xn) ≥ 0, ∀ x1, . . . , xn ≥ 0 if and only if p(x2

1, . . . , x
2
n) is a SOS polynomial.

Notice that in both theorems above, we have chosen to present the results in a form that will
be suitable for our purposes, instead of presenting them in their original form. In particular, the
statement of Diananda’s Theorem above means that to check if

p(x1, x2) = y00 + y10x1 + y01x2 + y20x
2
1 + y02x

2
2 + y11x1x2

is positive for all x1, x2 ≥ 0, one can check whether

p(x2
1, x

2
2) = y00 + y10x

2
1 + y01x

2
2 + y20x

4
1 + y02x

4
2 + y11x

2
1x

2
2
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is a SOS. For a discussion about the equivalence between the original version of Diananda’s The-
orem, and Theorem 2 above, the reader is directed to Parrilo (2000), and Zuluaga (2004).

Another key result that will be used throughout the article is the fact the dual of problem (2)
is (see, e.g., Karlin and Studden (1966); Bertsimas and Popescu (2002); and Zuluaga and Peña
(2005)):

(3)

d (or d) = inf (or sup) y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ (or ≤) φ(x1, x2),∀ (x1, x2) ∈ D,

where the quadratic polynomial

p(x1, x2) := y00 + y10x1 + y01x2 + y20x
2
1 + y02x

2
2 + y11x1x2.

It is not difficult to see that weak duality holds between (2) and (3); that is, p ≤ d (or p ≥ d).
More importantly, for the specific problems considered here, we will show that strong duality
holds between (2) and (3); that is p = d (or p = d), as long as (2) is feasible. Thus, in order
to obtain the semiparametric bound p (or p), we can solve (3). As we will see in the following
sections, the constraint in the polynomial p(x1, x2) in (3) is what leads to the use of results about
positive polynomials such as Theorems 1 and 2 to solve (2) by using SOSTOOLS. This approach
has been widely used to solve semiparametric bound problems in a number of areas (see, e.g.,
Karlin and Studden (1966); Bertsimas and Popescu (2002); Zuluaga and Peña (2005); Boyle and
Lin (1997); Bertsimas et al. (2006); Lasserre (2002); Kemperman (1968); Kemperman (1965); and
Vandenberghe et al. (2007)).

3. SOS PROGRAMMING FORMULATIONS

In this section we formally present three semiparametric bound problems: VaR probability,
joint probability and stop-loss payment of two random variables. Furthermore, we present their
corresponding SOS programming formulations.

3.1. VaR Probability Bounds. We first consider the problem of finding sharp upper and lower
bounds on Pr(w1X1 + w2X2 ≤ a). Specifically, without making any assumption (other than
moments) on the distribution of the random variables X1, X2, we solve for the probability that the
portfolio w1X1 + w2X2 (w1, w2 ∈ R) attains values lower than or equal to a ∈ R, given up to
the second order moment information (means, variances, and covariance) on X1, X2. The sharp
upper and lower semiparametric bounds for this problem can be (respectively) formulated as the
following optimization problems, obtained by setting problem (2) as φ(X1, X2) = I{w1X1+w2X2≤a},
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and D = R2 (cf. Section 2). The upper bound is

(4)

pVaR := sup Eπ(I{w1X1+w2X2≤a})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R2.

And the lower bound is as follows:

(5)

p
VaR

:= inf Eπ(I{w1X1+w2X2≤a})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R2.

Before obtaining the SOS programming formulation of these problems, let us state the well-
known feasibility condition in terms of the moment parameters (Bertsimas and Sethuraman, 2000,
Theorem 16.1.2).

Observation 1 (Feasibility). Problems (4) and (5) are feasible if and only if Σ is a positive semi-
definite matrix (i.e., all eigenvalues are greater than or equal to zero), where Σ is the moment
matrix:

Σ =

 1 µ1 µ2

µ1 µ
(2)
1 µ12

µ2 µ12 µ
(2)
2

 .
Proof. Follows from Diananda’s Theorem (Theorem 2) and convex duality (cf. Rockafellar (1970)).

�

Next we derive SOS programs to numerically compute pVaR, and p
VaR

by using SOS program-
ming solvers. To simplify the exposition, we will from now on assume without loss of generality
that w1 = w2 = 1 in both (4), and (5).

3.1.1. Upper bound. We begin by stating the dual problem of (4):

(6)
dVaR = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ I{x1+x2≤a},∀ x1, x2 ∈ R.

As the following observation states, as long as problem (4) is feasible, we can obtain pvar by
solving problem (6).
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Observation 2 (Strong Duality). Notice that the dual solution y00 = 2, and yij = 0 for (i, j) 6=
(0, 0) strictly satisfies (i.e., with >) the constraint in (6) for all x1, x2 ∈ R. Thus, if problem (4) is
feasible, then pVaR = dVaR.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (6) as a SOS program, we proceed as follows. First notice that (6) is
equivalent to:

(7)

dVaR = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ 1,∀ x1, x2 s.t. x1 + x2 ≤ a

p(x1, x2) ≥ 0,∀ x1, x2 ∈ R.

Notice that we can directly express the second constraint in (7) as a SOS constraint by using
Theorem 1. For the first constraint however, we need more work. Specifically, consider the trans-
formation of the axes below:

(8)

x′1 = x1 cos 450 + x2 sin 450 − a cos 450

x′2 = −x1 sin 450 + x2 cos 450

that is:

x′1 =
√

2
2

(x1 + x2 − a)

x′2 =
√

2
2

(−x1 + x2)

or:

x1 = 1
2
a+ 1√

2
(x′1 − x′2)

x2 = 1
2
a+ 1√

2
(x′1 + x′2)

Applying the substitution x1 → 1
2
a+ 1√

2
(x′1−x′2), x2 → 1

2
a+ 1√

2
(x′1 +x′2) to the first constraint

of (7), we have that:

p(x1, x2) ≥ 1,∀ x1, x2 s.t. x1 + x2 ≤ a

m
p(1

2
a+ 1√

2
(x′1 − x′2),

1
2
a+ 1√

2
(x′1 + x′2)) ≥ 1,∀ x′1 ≤ 0, x′2 ∈ R
m

p(1
2
a+ 1√

2
(x′1 − x′2),

1
2
a+ 1√

2
(x′1 + x′2)) ≥ 1,∀ x′1 ≤ 0, x′2 ≥ 0

p(1
2
a+ 1√

2
(x′1 − x′2),

1
2
a+ 1√

2
(x′1 + x′2)) ≥ 1,∀ x′1 ≤ 0, x′2 ≤ 0.
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By substituting x′1 → −x′1 in the second to last equation above and substituting x′1 → −x′1, x′2 →
−x′2 in the last equation, we obtain that (7) is equivalent to:
(9)
dVaR = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(1
2
a+ 1√

2
(−x′1 − x′2),

1
2
a+ 1√

2
(−x′1 + x′2))− 1 ≥ 0,∀ x′1 ≥ 0, x′2 ≥ 0

p(1
2
a+ 1√

2
(−x′1 + x′2),

1
2
a+ 1√

2
(−x′1 − x′2))− 1 ≥ 0,∀ x′1 ≥ 0, x′2 ≥ 0.

p(x1, x2) ≥ 0, ∀ x1, x2 ∈ R.

To finish, from Theorem 2 (applied to the first two constraints of (9)) and Theorem 1 (applied to
the last constraint of (9)), it follows that (9) is equivalent to the following SOS program:

(10)
dVaR = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(1
2
a+ 1√

2
(−x2

1 − x2
2),

1
2
a+ 1√

2
(−x2

1 + x2
2))− 1 is a SOS polynomial

p(1
2
a+ 1√

2
(−x2

1 + x2
2),

1
2
a+ 1√

2
(−x2

1 − x2
2))− 1 is a SOS polynomial

p(x2
1, x

2
2) is a SOS polynomial.

Notice that above we drop the primes in the variable labels (they are just variable labels). Also,
we do not go through the details of q(x1, x2) = p(1

2
a+ 1√

2
(x1−x2),

1
2
a+ 1√

2
(x1 +x2))−1 and the

SOS constraint q(x2
1, x

2
2) = p(1

2
a+ 1√

2
(x2

1−x2
2),

1
2
a+ 1√

2
(x2

1 +x2
2))−1. The algebraic expressions

of the polynomials in (10) are left out for brevity purposes. In fact, with current SOS solvers it is
not even necessary to provide the expanded algebraic expression of these polynomials.

The SOS program (10) can be readily solved with a SOS programming solver. Thus, if prob-
lem (4) is feasible (cf. Observation 1), it follows from Observation 2 that we can numerically
obtain the VaR semiparametric upper bound pVaR by solving problem (10) with a SOS solver.

3.1.2. Lower bound. We start with a semiparametric bound closely related to problem (5) as fol-
lows:

(11)

pc
VaR

:= sup Eπ(I{w1X1+w2X2≥a})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R2.

Notice that in (11) we are computing the upper semiparametric bound on the complement of the
VaR probability Pr(w1X1+w2X2 ≥ a). Thus, it clearly follows that p

VaR
= 1−pc

VaR
(cf. (5)). The
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feasibility of problem (11) is also characterized by the moment matrix condition of Observation 1;
and as it turns out, it is much easier to reformulate (11) as a SOS program.

As in previous sections, we begin by stating the dual of (11):

(12)
dc

VaR = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ I{x1+x2≥a},∀ x1, x2 ∈ R.

Analogous to Section 3.1.1 (see Observation 2), strong duality between (11) and (12) follows if
(11) is feasibe (i.e., if the condition in Observation 1 is satisfied).

Following the analogous steps to those taken in Section 3.1.1 for problem (6), we obtain that
problem (12) is equivalent to the SOS program below:

(13)

dc
VaR = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(1
2
a+ 1√

2
(x2

1 − x2
2),

1
2
a+ 1√

2
(x2

1 + x2
2))− 1 is a SOS polynomial

p(1
2
a+ 1√

2
(x2

1 + x2
2),

1
2
a+ 1√

2
(x2

1 − x2
2))− 1 is a SOS polynomial

p(x2
1, x

2
2) is a SOS polynomial.

The SOS program (13) can be readily solved with a SOS programming solver. Thus, if prob-
lem (5) is feasible (cf. Observation 1), it follows that we can numerically obtain the VaR semipara-
metric lower bound p

VaR
= 1− dc

VaR by solving problem (13) with a SOS solver.
It follows the probability Pr(X1 + X2 ≤ a) = 1 − Pr(X1 + X2 ≥ a). As long as we know

the upper and lower bounds on Pr(X1 + X2 ≥ a), the bounds Pr(X1 + X2 ≤ a) can be easily
obtained.

3.2. Probability Bounds. We consider the problem of finding sharp upper and lower bounds on
the probability Pr(X1 ≤ t1 and X2 ≤ t2) of two non-negative random variables X1, X2, attaining
values lower than or equal to t1, t2 ∈ R+ respectively, without making any assumption on the
distribution of the random variables X1, X2. Finding the sharp upper and lower semiparametric
bounds for this problem can be obtained by setting problem (2) as φ(X1, X2) = I{X1≤t1 and X2≤t2}

andD = R+2 (cf. Section 2), given up to the second order moment information (means, variances,
and covariance) on X1, X2:

(14)

p := sup Eπ(I{X1≤t1 and X2≤t2})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R+2
,
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and

(15)

p := inf Eπ(I{X1≤t1 and X2≤t2})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R+2
.

Before obtaining the SOS programming formulation of these problems, we discuss their feasibility
in terms of the moment information.

Observation 3 (Feasibility). Problems (14) and (15) are feasible if and only if Σ is a positive
semidefinite matrix (i.e., all eigenvalues are greater than or equal to zero) and all elements of Σ

are non-negative, where Σ is the moment matrix:

Σ =

 1 µ1 µ2

µ1 µ
(2)
1 µ12

µ2 µ12 µ
(2)
2

 .
Next we derive SOS programs to numerically compute p, and p by using SOS programming

solvers.

3.2.1. Upper bound. We begin by stating the dual problem of (14):

(16)
d = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ I{x1≤t1 and x2≤t2},∀ x1, x2 ≥ 0.

As the following observation states, as long as problem (14) is feasible, we can obtain p by
solving problem (16).

Observation 4 (Strong Duality). Notice that the dual solution y00 = 2, and yij = 0 for (i, j) 6=
(0, 0) strictly satisfies (i.e., with >) the constraint in (16) for all x1, x2 ≥ 0. Thus, if problem (14)
is feasible, then p = d.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (16) as a SOS program, we proceed as follows. First notice that (16) is
equivalent to:

(17)

d = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ 1,∀ 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2

p(x1, x2) ≥ 0,∀ x1, x2 ≥ 0.
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Although the second constraint of (17) can be handled directly, the first constraint is difficult
to reformulate as a SOS constraint. That is, there is no linear transformation from 0 ≤ x1 ≤
t1, 0 ≤ x2 ≤ t2 to R+2 or to R2 (that would allow the use of Theorems 1 and 2). Thus, we
change the problem to end up with a SOS program that either solves or approximates problem (17).
Specifically, consider the following problem related to (17):

(18)

d
′
= inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ 1,∀ x1 ≤ t1, x2 ≤ t2

p(x1, x2) ≥ 0,∀ x1 ≥ 0, x2 ≥ 0.

Notice that (18) is less constrained than (17) (the first constraint of (18) includes more values
of x1 and x2). Thus, d

′
is a upper bound on d; that is d

′ ≥ d (in fact, our intuition suggests that
d
′
= d).
After we apply the substitution x1 → t1 − x1, x2 → t2 − x2 to the first constraint of (18),

problem (18) is equivalent to:

(19)

d
′
= inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(t1 − x1, t2 − x2)− 1 ≥ 0, ∀ x1, x2 ≥ 0

p(x1, x2) ≥ 0, ∀ x1, x2 ≥ 0.

If we let q(x1, x2) = p(t1 − x1, t2 − x2)− 1, i.e.

q(x1, x2) = (y00 + y10t1 + y01t2 + y20t
2
1 + y02t

2
2 + y11t1t2 − 1)

−(y10 + 2t1y20 + y11t2)x1

−(y01 + 2t2y02 + y11t1)x2

+y20x
2
1 + y02x

2
2 + y11x1x2.

The first constraint of (19) can be replaced by q(x1, x2) ≥ 0,∀ x1, x2 ≥ 0. To finish, from
Theorem 2, it follows that (19) (with the first constraint written in terms of q(x1, x2)) is equivalent
to the following SOS program:

(20)

d
′
= inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that q(x2
1, x

2
2) is a SOS polynomial

p(x2
1, x

2
2) is a SOS polynomial.

The SOS program (20) can be readily solved with a SOS programming solver. Thus, if prob-
lem (14) is feasible (cf. Observation 3), it follows from Observation 4 that we can numerically
obtain a semiparametric bound Pr(X1 ≤ t1, X2 ≤ t2) ≤ d

′
by solving problem (20) with a SOS

solver.
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3.2.2. Lower bound. We begin with stating the dual problem of (15):

(21)
d = sup y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≤ I{x1≤t1 and x2≤t2},∀ x1, x2 ≥ 0.

As the following observation states, as long as problem (15) is feasible, we can obtain p by
solving problem (21).

Observation 5 (Strong Duality). Notice that the dual solution y00 = −1, and yij = 0 for (i, j) 6=
(0, 0) strictly satisfies (i.e., with <) the constraint in (21) for all x1, x2 ≥ 0. Thus, if problem (15)
is feasible, then p = d.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

Now, problem (21) is equivalent to

(22)

d = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≤ 1,∀ 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2

p(x1, x2) ≤ 0, ∀ x1 ≥ t1, x2 ≥ 0,

p(x1, x2) ≤ 0, ∀ x1 ≥ 0, x2 ≥ t2.

Using the similar approximation as the upper bound to the first constraint and applying x1 →
t1 + x1, x2 → t2 + x2 to the second and third constraints respectively, we have that (22) can be
approximated by solving:

(23)

d′ = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that 1− p(t1 − x1, t2 − x2) ≥ 0,∀ x1, x2 ≥ 0

−p(t1 + x1, x2) ≥ 0, ∀ x1, x2 ≥ 0,

−p(x1, t2 + x2) ≥ 0, ∀ x1, x2 ≥ 0,

where d′ ≤ d. Similar to the upper bound problem, we now let:

q1(x1, x2) = 1− p(t1 − x1, t2 − x2)

q2(x1, x2) = −p(t1 + x1, x2)

q3(x1, x2) = −p(x1, t2 + x2);
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that is,
q1(x1, x2) = 1− (y00 + y10t1 + y01t2 + y20t

2
1 + y02t

2
2 + y11t1t2)

+(y10 + 2t1y20 + y11t2)x1 + (y01 + 2t2y02 + y11t1)x2

−y20x
2
1 − y02x

2
2 − y11x1x2

q2(x1, x2) = −(y00 + y10t1 + y20t
2
1)

−(y10 + 2y20t1)x1 − (y01 + y11t1)x2

−y20x
2
1 − y02x

2
2 − y11x1x2

q3(x1, x2) = −(y00 + y01t2 + y02t
2
2)

−(y10 + y11t2)x1 − (y01 + 2y02t2)x2

−y20x
2
1 − y02x

2
2 − y11x1x2.

To finish, from Theorem 2, it follows that (23) (with the three constraints written in terms of
qi(x1, x2), i = 1, 2, 3) is equivalent to the following SOS program:

(24)

d′ = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that q1(x
2
1, x

2
2) is a SOS polynomial

q2(x
2
1, x

2
2) is a SOS polynomial

q3(x
2
1, x

2
2) is a SOS polynomial.

The SOS program (24) can be readily solved with a SOS programming solver. Thus, if prob-
lem (15) is feasible (cf. Observation 3), it follows from Observation 5 that we can numerically
approximate the ruin probability semiparametric lower bound d by solving problem (24) with a
SOS solver. Furthermore, notice that by solving (20) and (24) we obtain a “100% confidence in-
terval” d′ ≤ Pr(X1 ≤ t1 and X2 ≤ t2) ≤ d

′
on the value of the probability when given only up to

the second order moment information on the non-negative random variables X1, X2.
Following the same technique, we also derive the upper and lower bounds on the joint probability

Pr(X1 ≥ t1 and X2 ≥ t2) of two non-negative random variables X1, X2. See Appendix A for
details.

3.3. Bounds on Stop-Loss payments. Stop-loss payments we consider here have two loss com-
ponents X1 and X2. For example, a homeowner’s policy covers both property losses X1 and liabil-
ity lossesX2. Similarly, X1 could be hospital room and board costs andX2 be surgical expenses in
health insurance. We find the upper and lower bounds on the aggregate loss Z = X1 +X2, given
the mean, variance and covariance of X1 and X2. This time our function φ(X1, X2) in problem (2)
is defined as follows:

(25) φ(X1, X2) =


b if X1 +X2 ≥ a+ b

X1 +X2 − a if a ≤ X1 +X2 ≤ a+ b

0 if X1 +X2 ≤ a.
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Suppose the function φ(X1, X2) represents the benefits a direct insurer pays to a reinsurer, given
losses of X1 and X2. Under this contract, when the total losses are less than a, the direct insurer
retains all losses. When the sum exceeds the threshold a, the reinsurer pays the excess up to a
maximum of b. If the total losses exceed a + b, the part higher than b will be retained or ceded to
other reinsurers by the direct insurer. Compared with the previous problems, bounds on stop-loss
coverage is relatively easy to compute since X1 and X2 always appear in the form of X1 +X2 in
the objective function (25). Therefore, this problem can be considered as a one variable problem
by setting Z = X1 +X2 and calculating the moments of Z as follows:

µz = µ1 + µ2 and µ(2)
z = µ

(2)
1 + µ

(2)
2 + 2µ12.

With this transformation, the objective function (25) can be written as:

(26) φ(Z) =


b if Z ≥ a+ b

Z − a if a ≤ Z ≤ a+ b

0 if Z ≤ a.

Cox (1991) provides an explicit solution to a transformed problem of (26).1 We first solve this
problem numerically with a SOS program and then compare its results with those obtained from
Cox (1991)’s method to test the robustness of the SOS approach.

3.3.1. SOS program. Given problem (25) and D = R+2, the upper and lower semiparametric
bounds for this problem are formulated as the following optimization problems:2

(27)

pStopLoss(or p
StopLoss

) = sup (or inf) Eπ(φ(X1 +X2))

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R+2
.

1Only few bound problems have explicit solutions, but many of them can be solved by SOS programs.
2In general, this problem has a support D = R2. But if X1 and X2 stand for losses (as in our example), they are
nonnegative numbers.
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Letting Z = X1 + X2, problem (27) is transferred to a one-variable bound problem. Its upper
bound is expressed as:

(28)

pStopLoss = sup Eπ(φ(Z))

such that Eπ(1) = 1,

Eπ(Z) = µz

Eπ(Z2) = µ
(2)
z

π a probability distribution in R+,

and its lower bound is as follows:

(29)

p
StopLoss

= inf Eπ(φ(Z))

such that Eπ(1) = 1,

Eπ(Z) = µz

Eπ(Z2) = µ
(2)
z

π a probability distribution in R+.

Before obtaining the SOS programming formulation of the primal problems (28) and (29), we
discuss their feasibility in terms of their moment parameters.

Observation 6 (Feasibility). When the feasibility of stop-loss bounds is considered, we should
go back to the two-variable problem with the moment matrix Σ expressed as follows. Similar to
probability bounds problem in Section 3.2, problems (28) and (29) are feasible if and only if Σ is a
positive semidefinite matrix (i.e., all eigenvalues are greater than or equal to zero) and all elements
of Σ are non-negative.

Σ =

 1 µ1 µ2

µ1 µ
(2)
1 µ12

µ2 µ12 µ
(2)
2

 .
Furthermore, when two-variable feasibility is satisfied, one-variable feasibility is also met auto-
matically. That is, Σz is a positive semidefinite matrix and all elements of Σz are non-negative.

Σz =

[
1 µz

µz µ
(2)
z

]
.

Next we derive SOS programs to numerically compute pStopLoss, and p
StopLoss

by using SOS
programming solvers.

Upper bound. We begin with stating the dual problem of (28) as follows:

(30)
dStoploss = inf y0 + y1µz + y2µ

(2)
z

such that p(z) ≥ φ(z),∀ z ≥ 0,

where p(z) = y0 + y1z + y2z
2.
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As the following observation states, as long as problem (28) is feasible, we can obtain pStoploss

by solving problem (30).

Observation 7 (Strong Duality). Notice that the dual solution y0 = 2, and y1 = y2 = 0 strictly
satisfies (i.e., with >) the constraint in (30) for all z ≥ 0. Thus, if problem (28) is feasible, then
pStoploss = dStoploss.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (30) as a SOS program, we rewrite the inequality constraint in (30) as
three simultaneous inequalities. Problem (30) is equivalent to:

(31)

dStopLoss = inf y0 + y1µz + y2µ
(2)
z

such that p(z)− b ≥ 0, ∀z ∈ [a+ b,∞)

p(z)− z + a ≥ 0, ∀z ∈ [a, a+ b]

p(z) ≥ 0, ∀z ∈ [0, a].

The univariate SOS program (31) can be readily solved with a SOS programming solver. Thus, if
problem (28) is feasible (cf. Observation 6), it follows from Observation 7 that we can numerically
obtain the semiparametric upper bound pStoploss by solving problem (31) with a SOS solver.

Lower bound. We begin with staring the dual problem of (29):

(32)
dStoploss = sup y0 + y1µz + y2µ

(2)
z

such that p(z) ≤ φ(z),∀ z ≥ 0.

As the following observation states, as long as problem (29) is feasible, we can obtain p
Stoploss

by solving problem (32).

Observation 8 (Strong Duality). Notice that the dual solution y0 = −1, and y1 = y2 = 0 strictly
satisfies (i.e., with >) the constraint in (32) for all z ≥ 0. Thus, if problem (29) is feasible, then
p

Stoploss
= dStoploss.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (32) as a SOS program, we rewrite the inequality constraint in (32) as
three simultaneous inequalities. Problem (32) is equivalent to:

(33)

dStopLoss = sup y0 + y1µz + y2µ
(2)
z

such that b− p(z) ≥ 0, ∀z ∈ [a+ b,∞)

(z − a)− p(z) ≥ 0, ∀z ∈ [a, a+ b]

−p(z) ≥ 0, ∀z ∈ [0, a].
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The univariate SOS program (33) can be readily solved with a SOS programming solver. Thus, if
problem (29) is feasible (cf. Observation 6), it follows from Observation 8 that we can numerically
obtain the semiparametric lower bound p

Stoploss
by solving problem (33) with a SOS solver.

In addition, the lower bound of stop-loss payment p(φ) can be obtained by solving upper bound
of a transformed problem with objective function ψ(Z) where ψ(Z) = Z − φ(Z).

(34) ψ(Z) =


Z − b if Z ≥ a+ b

a if a ≤ Z ≤ a+ b

Z if Z ≤ a.

If the moment matrix Σ satisfies the feasibility requirement (cf. Observation 6), we can numeri-
cally obtain the semiparametric upper bound p(ψ) by solving the following dual problem (35) with
a SOS solver:

(35)

d(ψ) = inf y0 + y1µz + y2µ
(2)
z

such that p(z)− (z − b) ≥ 0, ∀z ∈ [a+ b,∞)

p(z)− a ≥ 0, ∀z ∈ [a, a+ b]

p(z)− z ≥ 0, ∀z ∈ [0, a].

Apparently, the upper bound of ψ(Z), p(ψ) = sup{Eπ[ψ(Z)]} given the same moment informa-
tion, equals µz minus the lower bound of φ(Z). That is, p(ψ) = µz − p(φ). Similarly, the upper
bound of stop-loss payment p(φ) can be obtained from the relation p(ψ) = µz − p(φ) after we
solve p(ψ).

Proof. See Appendix B. �

3.3.2. Cox (1991)’s Method. Suppose a direct insurer purchases a reinsurance policy and his over-
all claim payment ψ(Z) follows equation (34). Cox (1991) develops an explicit solution to the
bounds of the expected claim payment E[ψ(Z)] of the direct insurer, given mean and variance.
p(ψ), the upper bound on E[ψ(Z)], is described as follows: For values of a satisfying 0 ≤ a < µz,

p(ψ) =


(µz − b)(µz − a)2 + µzσ

2
z

(µz − a)2 + σ2
z

if a ≤ a+ b ≤ σ2
z + µ2

z − a2

2(µz − a)

a+
1

2

[
µz − a− b+

√
(a+ b− µz)2 + σ2

z

]
if a+ b >

σ2
z + µ2

z − a2

2(µz − a)
,

where σz =

√
µ

(2)
z − µ2

z.

When a ≥ µz, the upper bound p(ψ) = µz.
The lower bound on E[ψ(Z)], p(ψ), is described as follows: For values of a + b satisfying

0 ≤ a+ b ≤ µz,
p(ψ) = µz − b.
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If µz ≤ a+ b ≤ µz +
σ2

z

µz

,

p(ψ) =
aµz

a+ b
.

When a+ b ≥ µz +
σ2

z

µz

,

p(ψ) =



aµ2
z

σ2
z + µ2

z

if 0 ≤ a ≤ µz

2
+

σ2
z

2µz

1

2

[
µz + a−

√
(µz − a)2 + σ2

z

]
if
µz

2
+

σ2
z

2µz

< a ≤ (a+ b)2 − µ2
z − σ2

z

2(a+ b− µz)
µz(a+ b− µz)

2 + (µz − b)σ2
z

(a+ b− µz)2 + σ2
z

if
(a+ b)2 − µ2

z − σ2
z

2(a+ b− µz)
≤ a ≤ a+ b.

After the upper and lower bounds p(ψ) and p(ψ) are calculated, the bounds on the stop-loss
payment φ(Z) = Z−ψ(Z) can be found by the relations p(φ) = µz−p(ψ) and p(φ) = µz−p(ψ).

4. NUMERICAL ANALYSIS

To understand the extent to which extreme events affect our decision, we apply the moment
methods to the insurance and financial markets with three examples. The first example is an ap-
plication of VaR probability bounds we derive in Section 3.1; the second one is for probability
bounds (See Section 3.2); the bounds on stop-loss payments derived in Section 3.3 are illustrated
in example three.

4.1. Example of VaR Probability Bounds. The VaR problem is to find the upper and lower
bounds on a where Pr(w1X1 + w2X2 ≤ a) = 0.05, subject to the moment information on X1 and
X2. We connect this to a semiparametric probability problem by finding bounds on Pr(w1X1 +

w2X2 ≤ a) for enough values of a to solve the inverse problem.
In Section 3.1, we find bounds for the special case Pr(X1 + X2 ≤ a). We can easily convert

Pr(w1X1 + w2X2 ≤ a) to Pr(X1 + X2 ≤ a) by adjusting the moments of X1 and X2. Let
X

′
1 = w1X1 and X ′

2 = w2X2. Then we have the following relationships:

(36)

E(X
′
i) = E(wiXi) = wiµi, i = 1, 2

E(X
′2
i ) = E(w2

iX
2
i ) = w2

i µ
(2)
i , i = 1, 2

E(X
′
1X

′
2) = E(w1X1w2X2) = w1w2µ12.

That is, we can rescale a problem in the form w1X1 + w2X2 ≤ a to the form X1 +X2 ≤ a.
To show how to solve the bound on VaR, we study a possible extreme scenario in the interna-

tional stock markets. That is, what may happen if the stock indices of two countries both reach
some very low levels. Specifically, we analyze the tail joint probability of total return of a portfolio
investing in the S&P500 and Nikkei indices.
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First, we calculate the moments of the S&P500 annualized return (denoted rsp) and that of the
Nikkei (denoted rnk) based on the monthly historical data from 1984 to 2006. There are 276
observations in our sample. Their moments are as follows:

E(X1) = 0.1107 = E(rsp) = µ1 E(X2
1 ) = 0.0349

E(X2) = 0.0473 = E(rnk) = µ2 E(X2
2 ) = 0.0554

Var(X1) = 0.0227 = Var(rsp) ρ = 0.4190

Var(X2) = 0.0531 = Var(rnk)

Cov(X1, X2) = 0.0145 = Cov(rsp, rnk).

On average, the S&P500 annualized return (0.1107) is higher than that of Nikkei (0.0473) but the
S&P500 is less volatile (Var(rsp) < Var(rnk)). Moreover, they have a positive correlation 0.4190.
This relatively high correlation reflects the impact of economic globalization, thus weakening the
diversification effect.

Second, suppose we invest 50% of our assets in the S&P500 and 50% in Nikkei, i.e. 0.5X1 +

0.5X2 = 0.5rsp + 0.5rnk. We calculate the upper and lower bounds for the probability that this
portfolio return falls below the level a, i.e. Pr(0.5rsp + 0.5rnk ≤ a). The upper and lower lines
in Figure 1 respectively represent the upper and lower bounds of joint probabilities with different
values of a. The upper and lower bounds include all possible joint probabilities, including the
bivariate normal joint probability shown as the middle line. This means that although we know
only the moments of order 1 and 2, we can be sure the probability of this rare event is between the
upper and lower bounds.

Finally, we use Figure 1 to obtain the upper and lower bounds of the VaR, a, given a tail prob-
ability. Popular left tail levels usually are 1% and 5%. Figure 1 gives us an idea how likely the
return of this portfolio will be lower than a over a year under different conditions. For example,
if we focus on the 5%-VaR, the upper bound aL tells us that there is a 5% chance the portfolio
return would fall below -0.70 and the lower bound aU suggests the VaR equals to 0.10 with the
same probability.

4.2. Example of Probability Bounds. What makes the moment methods valuable for our analy-
sis is that, they depend on much less restrictive assumptions to compute default risk and ruin
probability. We show how to estimate the joint probability of extreme events, regardless of the
specific choice of distributions. We detail a simple calibration exercise to compute the bounds of a
joint probability as follows.

Consider the American International Group (AIG), a publicly-traded insurance company. It,
as other insurers, faces the same problem of managing extreme events, i.e. unexpectedly high
claims due to catastrophic events like Hurricane Katrina in 2005 and simultaneously suffering
unanticipated poor asset returns caused by financial market crashes. This leads us to calculate the
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FIGURE 1. Upper and lower bounds for the probability Pr(0.5rsp + 0.5rnk ≤ a)
where rsp is the monthly annualized return on the S&P500 index and rnk is that
of the Nikkei index. The vertical axis is the probability and the horizontal axis
stands for different values of a. The 5% VaR0.05 of the normal distribution equals to
a = −0.20. It falls between the semiparametric lower bound aL and upper bound
aU . That is, aL < VaR0.05 < aU .

bounds on Pr(r ≤ t1,m ≤ t2) given moment information, where r is AIG’s return on its invested
assets and m is the margin on its insurance business.

The return ri of asset i in the portfolio is equal to Pi,t/Pi,t−1 − 1 where Pi,t−1 and Pi,t denote
the prices of asset i at the beginning and the end of the period. If we focus on the price ratio, the
condition r ≤ t1 changes to

(37) X1i = ri + 1 =
Pi,t

Pi,t−1

≤ t′1,

where t′1 = t1 + 1. As for AIG’s portfolio, r is the weighted average return of 6 assets: stocks,
government bonds, corporate bonds, real estates, mortgages and cash & short-term investments
(i = 1, 2, . . . , 6):

r =
6∑

i=1

wiX1i − 1 = X1 − 1,

where wi is the weight of asset i in the portfolio. Indeed, we calculate the bounds for Pr(X1 ≤
t′1) = Pr(

∑6
i=1wiX1i ≤ t′1) which is equivalent to Pr(r ≤ t1). We make this shift from asset

returns to price ratios to apply our SOS results because we need non-negative random variables.
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The margin on insurance business m is defined as

m = 1− LR,

where LR is the economic loss ratio. Following a standard measure in the insurance literature
(Cummins, 1990; Phillips, Cummins, and Allen, 1998; Yu and Lin, 2007), we calculate the eco-
nomic loss ratio as follows:

LR =

∑12
k=1 PVFk × NLIk∑12

k=1 NPEk

.

We classify AIG’s business into twelve categories (k = 1, 2, . . . , 12).3 The present value factor
PVFk is calculated from the industry liability payout factor for loss category k (k = 1, 2, . . . , 12)
and the discount rates. The discount rates are the risk-free rates estimated from the U.S. Treasury
spot-rate yield curves.4 The variable NLIk is the net loss incurred for category k for AIG. The
variable NPEk is its net premium earned for category k. See Cummins (1990) for calculation
details. Using the actual premium in the denominator and the riskless present value of losses in
the numerator allows us to capture changes in loss ratios due to insurance shocks. In order to
reformulate the condition m ≤ t2 so that the condition fits our SOS results, similar to the asset
return case, we replace m ≤ t2 withX2 ≤ t′2 whereX2 = m+1 and t′2 = t2 +1. It clearly follows
that Pr(m ≤ t2) is equivalent to Pr(X2 ≤ t′2).

The weights of different asset categories (wi) are calculated from the quarterly data of the Na-
tional Association of Insurance Commissioners (NAIC). The quarterly AIG and industry losses
and premiums are also obtained from the NAIC. We use the quarterly annualized returns of the
Standard & Poor’s 500 (S&P500), the LB IT government bond index, the domestic high-yield
corporate bond index, the NAREIT-All index, the ML mortgage index and the U.S. 30 Day T-Bill
as proxies for AIG’s stock returns, government bond returns, corporate bond returns, real estate
returns, mortgage returns and cash & short-term investment returns respectively. In sum, we have
52 quarterly observations from 1991 to 2003. Here are their moments:

E(X1) = 1.0442 = E(r) + 1 = µ1 E(X2
1 ) = 1.0967

E(X2) = 1.3393 = E(m) + 1 = µ2 E(X2
2 ) = 1.8287

Var(X1) = 0.0063 = Var(r) ρ = 0.1244

Var(X2) = 0.0350 = Var(m)

Cov(X1, X2) = 0.0019.

On average, AIG’s margin on its insurance business (E(m) = 0.3393) is higher than its asset
return (E(r) = 0.0442) while the margin is more volatile (Var(m) > Var(r)). Moreover, the asset

3Following the NAIC classifications, our twelve insurance business categories include farmowners and homeowners
multiple peril; private passenger auto liability; workers’ compensation; commercial multiple peril; medical malprac-
tice; special liability; special property; automobile physical damage; fidelity and surety; other; financial guarantee and
mortgage guarantee; and other liability and product liability.
4Data source: the Federal Reserve Bank of St. Louis’ Federal Reserve Economic Data (FRED).
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return and insurance margin are positively correlated (0.1244). This implies that generally AIG’s
insurance business and investment performances moderately move in the same direction.

FIGURE 2. The upper left plot shows the upper bound of the joint probability
Pr(r ≤ t1,m ≤ t2) where r is invested asset return and m is insurance business
margin of AIG. The upper right one is the bivariate normal cumulative probabilities
with the same moments for AIG. The ratio of the upper bound to the bivariate nor-
mal cumulative joint probabilities is shown in the third graph. The vertical axis of
the graphs is the probability. It is the ratio in the third graph. The two axes at the
bottom in all three graphs represent the return t1 and the insurance margin t2.

To examine the tail-risk implication of our model, we start with the SOS programming to solve
Pr(r ≤ t1,m ≤ t2). Then we compare it to the bivariate normal cumulative joint probability with
the same set of moments. The upper left 3-dimensional (3D) plot in Figure 2 shows the upper
bounds of the joint probability Pr(r ≤ t1,m ≤ t2) with different values of t1 and t2 and the upper
right one is the bivariate normal cumulative joint probabilities with the same moments for AIG.
The lower bound is always zero. The ratios of the upper bounds to the bivariate normal cumulative
joint probabilities are shown in the third graph. We can see that the ratios are always above 1.
This means that the upper bound probabilities are always higher than those of the bivariate normal.
Their difference is much larger when t1 and t2 are low. For example, when t1 = 0 and t2 = 0, the
upper bound of Pr(r ≤ 0,m ≤ 0) is about 45 times higher than the cumulative joint probability
of the bivariate normal. That is, the upper bound has a much fatter tail.

Next, we explore the upper bound implication for the joint probabilities across different values
of one ti given the other tj is unchanged (i = 1 or 2 and i 6= j). Specifically, we are interested
in how one value (e.g. asset return t1) changes the joint tail probability if the other value (e.g.
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FIGURE 3. Each plot shows the upper bound on the joint probability Pr(r ≤
t1,m ≤ t2) (the upper curve in each graph) and the bivariate normal cumula-
tive probability with the same moments (the lower curve) for AIG. They are a
function of asset return t1 given an insurance margin level t2. Six graphs fix t2
at different values: E(m) − 0.25

√
Var(m) = 0.2925,E(m) − 0.50

√
Var(m) =

0.2457,E(m) − 0.75
√

Var(m) = 0.1989,E(m) −
√

Var(m) = 0.1521,E(m) −
1.25

√
Var(m) = 0.1053 and E(m) − 1.50

√
Var(m) = 0.0585. The upper left

graph corresponds to the case with E(m)− 0.25
√

Var(m) and the upper right one
is for E(m)−0.50

√
Var(m), and so on. The vertical axis is the probability and the

horizontal axis is the return on asset t1.

insurance margin t2) is a constant. As an illustration, we fix the insurance margin t2 and then solve
the upper bound of joint probability Pr(r ≤ t1,m ≤ t2) by changing t1. The first graph in Figure
3 shows its upper bound given t2 = E(m)−0.25

√
Var(m) = 0.2925. We also compare this result
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with the bivariate normal case. As we expect, the upper bound is above the bivariate normal curve.
That is, the upper bound has a fatter tail which suggests a higher ruin probability.

Furthermore, we set the variable t2 (insurance margin) at five different levels based on 0.5, 0.75,
1, 1.25 and 1.50 standard deviations lower than the mean: 0.2457, 0.1989, 0.1521, 0.1053 and
0.0585. Then we draw their upper bounds and bivariate normal curves (the last five graphs in
Figure 3). The trend of these graphs are consistent with our expectation. As t2 decreases, the
cumulative joint probability levels out at a lower value. For example, when t2 = 0.2925, the upper
bound of cumulative joint probability stays at 0.95 after it reaches this level. However, the stable
level is only about 0.35 when t2 = 0.0585. Intuitively, a lower value is associated with a lower
cumulative probability. Again, the bivariate normal curve is below the upper bound in all graphs.

4.3. Example of Stop-loss Payments. In this section, we find the upper and lower bounds on the
expected payment of a stop-loss contract written by a reinsurance company. Suppose AIG sells
$1 million new homeowners insurance and $1 million new private passenger auto liability policies
this year. It reinsures claim costs in excess of a million arising from these two businesses to Swiss
Re. Swiss Re pays part of AIG’s claims only if the threshold or deductible a is reached, subject
to a policy limit b million. The upper and lower bounds on the expected payment of Swiss Re is
examined here following Section 3.3.

The quarterly data of AIG from 1991 to 2004 are obtained from the NAIC. There are 56 ob-
servations from which we calculate the moments of AIG loss payments per $1 million premium
earned, respectively, for its homeowners insurance (LHO) and its private passenger auto liability
insurance (LPPA). Their moments of loss amounts in million dollars are summarized as follows:

E(X1) = 0.6370 = E(LHO) = µ1 E(X2
1 ) = 0.9364

E(X2) = 0.6844 = E(LPPA) = µ2 E(X2
2 ) = 0.5073

Var(X1) = 0.5306 = Var(LHO) ρ = 0.1647

Var(X2) = 0.0390 = Var(LPPA)

Cov(X1, X2) = 0.02369.

On average, the expected claim payments of these two lines of business are similar although the
homeowners insurance is much more volatile since the homeowners business is more vulnerable
to catastrophes and other weather-related claims.

Since the stop-loss payment depends on given levels of the deductible a and the policy limit
b, we only change one parameter (e.g. b) and fix the other (e.g. a) to show our upper and lower
bounds. Figure 4 illustrates the upper and lower bounds with different policy limits b given a
certain deductible level of a. The upper and lower solid lines in each graph stand for the upper and
lower bounds numerically solved by the SOS program and the bubble lines are the upper and lower
bounds computed from Cox (1991)’s method. The upper left graph in Figure 4 shows the expected
stop-loss payment of Swiss Re to AIG with no deductible (a = 0). When the policy limit b equals
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FIGURE 4. Each plot shows the upper (the top curve in each graph) and lower
bounds (the curve in the bottom) on the expected stop-loss payment. They are a
function of the policy limit b given a level of the deductible a. The solid lines
are the upper and lower bounds obtained from the SOS programs. The bubble
lines show the upper and lower bound solutions based on the Cox (1991)’s explicit
formula. Six graphs fix a at 0, 0.25, 0.5, 0.75, 1 and 1.5 million dollars respectively,
with a = 0 on the upper left and running to the right then down. The vertical axis
is the expected payment and the horizontal axis is the policy limit b, both in million
dollars.

to $1 million, both methods obtain the same upper and lower bounds, $1 million and $0.7 million
respectively; when b > 1.5, the lower bound of these two methods matches pretty well while the
upper bound of the SOS program levels out at a relatively higher value ($1.4 million) than that of
Cox (1991)’s method ($1.3 million). For the cases that the deductible a is fixed at the level 0.5,
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0.75, 1 or 1.5, the solutions from the SOS and from the explicit formula of Cox (1991)’s method
are almost identical. It suggests that the SOS program works pretty well for this stop-loss payment
problem. In addition, we should note that SOS program can be flexibly applied to more problems,
most of which cannot be explicitly solved.

FIGURE 5. Each plot shows the upper (the top curve in each graph) and lower
bounds (the curve in the bottom) on the expected stop-loss payment. They are a
function of the deductible a given a level of the policy limit b. The solid lines
are the upper and lower bounds obtained from the SOS programs. The bubble
lines show the upper and lower bound solutions based on the Cox (1991)’s explicit
formula. Six graphs fix b at 0, 0.25, 0.5, 0.75, 1 and 1.5 million dollars respectively,
with b = 0 on the upper left and running to the right then down. The vertical axis is
the expected payment and the horizontal axis is the deductible a, both in million
dollars.
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To further show the robustness of SOS program solutions, we consider the upper and lower
bounds of a Swiss Re stop-loss policy paying up to a fixed level b while AIG could select different
deductibles a. Each graph in Figure 5 shows the upper and lower bounds given a certain policy
limit b with different deductibles a. As we expect, the bounds on Swiss Re’s expected payments
increase as the fixed value b increases (i.e. the stop-loss policy covers more losses). Again, bounds
calculated from the SOS program and the Cox (1991)’s method remain qualitatively similar.

5. CONCLUSION

We have extended the application of classical moment problems (or semiparametric methods)
to finance, insurance and actuarial science in three ways, all taking into account the correlation
between different random variables. The first finds bounds on the sum of two variables, given up
to second moment information. The second allows us to put “100% confidence intervals” on the
joint probability of two extreme events. The third one computes bounds on the expected payment
of a stop-loss policy, given only the moments of the loss components.

In each case the moment information may be based on historical observations or judgements
from scenario analysis. We provide examples to illustrate the potential usefulness of moment
methods in assessing probability of rare events. There are other applications where our approach
could be useful. For example, this approach can be used to estimate the default probability of fixed-
income securities, under incomplete knowledge of the enterprise and economic factors driving the
credit risk. In other areas such as inventory and supply chain management, this approach can be
applied to find inventory policies that will be robust to different (unknown) demand distributions
in the future. Even when the distributions of the random variables are assumed to be known,
this approach can be implemented to measure sensitivity of the given joint probabilities, VaR and
expected benefits to model misspecification (Lo, 1987; Hobson, Laurence, and Wang, 2005).
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APPENDIX A: PROBABILITY BOUNDS ON Pr(X1 ≥ t1, X2 ≥ t2)

We consider the problem of finding sharp upper and lower bounds on the probability Pr(X1 ≥
t1 and X2 ≥ t2) of two non-negative random variables X1, X2, attaining values higher than or
equal to t1, t2 ∈ R+ respectively, given up to second order moment information (means, variances,
and covariance) onX1, X2, without making any other assumption on the distribution of the random
variables X1, X2. Finding the sharp upper and lower semiparametric bounds for this problem
can be (respectively) formulated as the following optimization problems, obtained by setting in
problem (2) φ(X1, X2) = I{X1≥t1 and X2≥t2}, and D = R+2 (cf. Section 2):

(38)

p := sup Eπ(I{X1≥t1 and X2≥t2})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R+2
,

and

(39)

p := inf Eπ(I{X1≥t1 and X2≥t2})

such that Eπ(1) = 1,

Eπ(Xi) = µi, i = 1, 2,

Eπ(X2
i ) = µ

(2)
i , i = 1, 2,

Eπ(X1X2) = µ12,

π a probability distribution in R+2
.

Before obtaining the SOS programming formulation of these problems, we discuss its feasibility
in terms of their moments.

Observation 9 (Feasibility). Problems (38) and (39) are feasible if and only if Σ is a positive
semidefinite matrix (i.e., all eigenvalues are greater than or equal to zero) and all elements of Σ

are non-negative, where Σ is the moment matrix:

Σ =

 1 µ1 µ2

µ1 µ
(2)
1 µ12

µ2 µ12 µ
(2)
2

 .
Proof. Follows from Diananda’s Theorem (Theorem 2) and convex duality (cf. Rockafellar (1970)).

�

Next we derive SOS programs to numerically compute p, and p by using SOS programming
solvers.
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Upper bound. We begin by stating the dual problem of (38):

(40)
d = inf y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ I{x1≥t1 and x2≥t2},∀ x1, x2 ≥ 0.

As the following observation states, as long as problem (38) is feasible, we can obtain p by
solving problem (40).

Observation 10 (Strong Duality). Notice that the dual solution y00 = 2, and yij = 0 for (i, j) 6=
(0, 0) strictly satisfies (i.e., with >) the constraint in (40) for all x1, x2 ≥ 0. Thus, if problem (38)
is feasible, then p = d.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (40) as a SOS program, we proceed as follows. First notice that (40) is
equivalent to:

(41)

d = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≥ 1,∀ x1 ≥ t1, x2 ≥ t2

p(x1, x2) ≥ 0,∀ x1, x2 ≥ 0.

Applying the substitution x1 → x1 + t1, x2 → x2 + t2 to the first constraint of (41), we have
that (41) is equivalent to:

(42)

d = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1 + t1, x2 + t2)− 1 ≥ 0,∀ x1, x2 ≥ 0

p(x1, x2) ≥ 0, ∀ x1, x2 ≥ 0.

Now let q(x1, x2) = p(x1 + t1, x2 + t2)− 1; that is

q(x1, x2) = (y00 + y10t1 + y01t2 + y20t
2
1 + y02t

2
2 + y11t1t2 − 1)

+(y10 + 2t1y20 + y11t2)x1

+(y01 + 2t2y02 + y11t1)x2

+y20x
2
1 + y02x

2
2 + y11x1x2,

so that the first constraint of (42) can be replaced by q(x1, x2) ≥ 0,∀ x1, x2 ≥ 0. To finish, from
Theorem 2, it follows that (42) (with the first constraint written in terms of q(x1, x2)) is equivalent
to the following SOS program:

(43)

d = inf y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that q(x2
1, x

2
2) is a SOS polynomial

p(x2
1, x

2
2) is a SOS polynomial.
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The SOS program (43) can be readily solved with a SOS programming solver. Thus, if prob-
lem (38) is feasible (cf. Observation 9), it follows from Observation 10 that we can numerically
obtain the probability semiparametric upper bound p by solving problem (43) with a SOS solver.

Lower bound. We begin by stating the dual problem of (39):

(44)
d = sup y00 + y10µ1 + y01µ2 + y20µ

(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≤ I{x1≥t1 and x2≥t2},∀ x1, x2 ≥ 0.

As the following observation states, as long as problem (39) is feasible, we can obtain p by
solving problem (44).

Observation 11 (Strong Duality). Notice that the dual solution y00 = −1, and yij = 0 for (i, j) 6=
(0, 0) strictly satisfies (i.e., with <) the constraint in (44) for all x1, x2 ≥ 0. Thus, if problem (39)
is feasible, then p = d.

Proof. Follows from convex duality (cf. (Zuluaga and Peña, 2005, Proposition 3.1)). �

To formulate problem (44) as a SOS program, we proceed as follows. First notice that (44) is
equivalent to:

(45)

d = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

s.t. p(x1, x2) ≤ 1,∀ x1 ≥ t1, x2 ≥ t2

p(x1, x2) ≤ 0,∀ x1 ≥ 0, 0 ≤ x2 ≤ t2,

p(x1, x2) ≤ 0,∀ 0 ≤ x1 ≤ t1, x2 ≥ 0.

Although the first constraint of (45) can be handled as in the upper bound problem (cf. Sec-
tion 3.2.1), the last two constraints are difficult to reformulate as SOS constraints. That is, there is
no linear transformation from x1 ≥ 0, 0 ≤ x2 ≤ t2 to R+2 or to R2 (that would allow the use of
Theorems 1 and 2). Thus, we change the problem to end up with a SOS program that either solves
or approximates problem (45). Specifically, consider the following problem related to (45):

(46)

d′ = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that p(x1, x2) ≤ 1,∀ x1 ≥ t1, x2 ≥ t2

p(x1, x2) ≤ 0,∀ x1 ≥ 0, x2 ≤ t2,

p(x1, x2) ≤ 0,∀ x1 ≤ t1, x2 ≥ 0.

Notice that (46) is less constrained than (45) (the last two constraints of (46) include more values
of x1 and x2). Thus, d′ is a lower bound on d; that is d′ ≤ d (in fact, intuition suggests that d′ = d).
Therefore, d′ and the corresponding upper bound of Section 3.2.1 still give a “100% confidence
interval” on the value of the cumulative probability of interest.
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Now, problem (46) is equivalent to (applying variable substitutions similar to the ones used in
Section 3.2.1, and multiplying by −1 to get ≥ constraints):

(47)

d′ = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that 1− p(x1 + t1, x2 + t2) ≥ 0,∀ x1, x2 ≥ 0

−p(x1, t2 − x2) ≥ 0, ∀ x1, x2 ≥ 0,

−p(t1 − x1, x2) ≥ 0, ∀ x1, x2 ≥ 0.

Similar to the upper bound problem, we now let:

q1(x1, x2) = 1− p(x1 + t1, x2 + t2)

q2(x1, x2) = −p(x1, t2 − x2)

q3(x1, x2) = −p(t1 − x1, x2);

that is,
q1(x1, x2) = −(y00 + y10t1 + y01t2 + y20t

2
1 + y02t

2
2 + y11t1t2 − 1)

−(y10 + 2t1y20 + y11t2)x1 − (y01 + 2t2y02 + y11t1)x2

−y20x
2
1 − y02x

2
2 − y11x1x2

q2(x1, x2) = −(y00 + y01t2 + y02t
2
2)

−(y10 + y11t2)x1 − (−y01 − 2y02t2)x2

−y20x
2
1 − y02x

2
2 + y11x1x2

q3(x1, x2) = −(y00 + y10t1 + y20t
2
1)

−(−y10 − 2y20t1)x1 − (y01 + y11t1)x2

−y20x
2
1 − y02x

2
2 + y11x1x2.

To finish, from Theorem 2, it follows that (47) (with the first constraint written in terms of
qi(x1, x2), i = 1, . . . , 3) is equivalent to the following SOS program:

(48)

d′ = sup y00 + y10µ1 + y01µ2 + y20µ
(2)
1 + y02µ

(2)
2 + y11µ12

such that q1(x
2
1, x

2
2) is a SOS polynomial

q2(x
2
1, x

2
2) is a SOS polynomial

q3(x
2
1, x

2
2) is a SOS polynomial.

The SOS program (48) can be readily solved with a SOS programming solver. Thus, if prob-
lem (39) is feasible (cf. Observation 9), it follows from Observation 11 that we can numerically
approximate the ruin probability semiparametric lower bound p by solving problem (48) with a
SOS solver. Furthermore, notice that by solving (43) and (48) we obtain a “100% confidence in-
terval” d′ ≤ Pr(X1 ≥ t1 and X2 ≥ t2) ≤ p on the value of the probability when given only up to
the second order moment information on the non-negative random variables X1, X2.
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APPENDIX B: OBTAIN BOUNDS ON STOP-LOSS PAYMENTS FROM A TRANSFORMED PROBLEM

Let ψ(Z) = Z − φ(Z) where φ(Z) is the stop-loss payment function defined in problem (25)
and ψ(Z) is the transform function (34).

If the moment matrix Σ satisfies the feasibility requirement (cf. Observation 6), we can nu-
merically obtain the semiparametric upper bound p(ψ). The upper bound of ψ(Z), p(ψ) =

sup{Eπ[ψ(Z)]} given the same moment information, equals µz minus the lower bound of φ(Z).
That is, p(ψ) = µz − p(φ).

Proof. On one side,

(49)

p(ψ) = sup{Eπ[ψ(Z)]}

Eπ[ψ(Z)] = µz − Eπ[φ(Z)]

p(ψ) ≥ µz − Eπ[φ(Z)] ∀π with given moments

p(ψ) ≥ µz − p(φ).

On the other side,

(50)

p(φ) = inf{Eπ[φ(Z)]}

since φ(Z) = Z − ψ(Z)

Eπ[φ(Z)] = µz − Eπ[ψ(Z)]

p(φ) ≤ µz − Eπ[ψ(Z)] ∀π with given moments

p(φ) ≤ µz − p(ψ)

p(ψ) ≤ µz − p(φ).

In order to satisfy both (49) and (50) simultaneously, p(ψ) must equal µz − p(φ). �

The lower bound of ψ(Z), p(ψ) = inf{Eπ[ψ(Z)]} given the same moment information, equals
µz minus the upper bound of φ(Z). That is, p(ψ) = µz − p(φ).

Proof. On one side,

(51)

p(ψ) = inf{Eπ[ψ(Z)]}

Eπ[ψ(Z)] = µz − Eπ[φ(Z)]

p(ψ) ≤ µz − Eπ[φ(Z)] ∀π with given moments

p(ψ) ≤ µz − p(φ).
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On the other side,

(52)

p(φ) = sup{Eπ[φ(Z)]}

Eπ[φ(Z)] = µz − Eπ[ψ(Z)]

p(φ) ≥ µz − Eπ[ψ(Z)] ∀π with given moments

p(φ) ≥ µz − p(ψ)

p(ψ) ≥ µz − p(φ).

In order to satisfy both (51) and (52) simultaneously, p(ψ) must equal µz − p(φ). �


