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Abstract

Loss reserving is one of the most challenging tasks facing actu-
aries. Numerous approaches have been developed to give reasonable
estimates. Generalized linear models (GLMs) are becoming quickly
popular statistical analysis methods to estimate loss reserves. How-
ever, most of these models are aggregate reserving methods based on
loss development triangles, without using information with regard to
the actual claims processes. In this paper we establish a more so-
phisticated structural reserving method incorporating more detailed
information, such as the premium exposure emergence pattern, the
loss emergence pattern and the loss development pattern, within the
framework of GLMs.
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1 Introduction

Loss reserving is one of the most challenging tasks facing actuaries. Numer-

ous approaches have been developed to give reasonable estimates. Wiser et

al. (2001) provides a detailed introduction of loss reserving. Schmidt (2006)

gives a unifying survey of some of the most important methods and models of

loss reserving which are based on loss development triangles. Haberman and

Renshaw (1996) gives a comprehensive review of the application of general-

ized linear models (GLMs) to actuarial problems, including loss reserving.

GLMs are becoming quickly popular statistical analysis methods to estimate

loss reserves. Hoedemakers et al. (2005) constructs bounds for the discounted

loss reserves within the framework of GLMs. Verrall (2004) uses a Bayesian

parametric model within the framework of GLMs. Most of these models

are aggregate reserving methods based on loss development triangles, with-

out using information with regard to the actual claims processes. In this

chapter we establish a more complex structural reserving method with more

detailed information, such as the premium exposure emergence pattern, the

loss emergence pattern and the loss development pattern, within the frame-

work of generalized linear models (GLMs). This model has the following

advantages:
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• Theoretically it is more accurate than aggregate loss reserving methods

based on loss development triangles, because more detailed information

is used.

• It gives more flexibility in dealing with unusual or quickly changing

situations, as variables are analyzed continuously rather than discretely.

• A discount factor can be added and adjusted to the model easily.

• It provides a mechanism to analyze the effects of each factor in loss

reserving separately.

• The model connects the frequency and severity estimations, both in

ratemaking and loss reserving, making the work of actuaries more con-

sistent and explainable.

2 The Generalized Linear Models

This section provides a short summary of the main characteristics of general-

ized linear models (GLMs). McCullagh and Nelder (1989) provide a detailed

introduction to GLMs. The books by Aitkin et al. (1989) and Dobson (1990)

are also excellent references with many examples of applications of GLMs.

Hardin and Hilbe (2007) provide a handbook for data analysis with GLMs
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and GLM extensions. Lee et al. (2007) is a comprehensive reference for GLMs

with random effects. Anderson et al. (2005), Coutts (1984), Brockman and

Wright (1992) are excellent references for the estimation of the pure risk

premium by GLMs.

GLMs are a natural generalization of classical linear models that allow

the mean of a population to depend on a linear predictor through a (possibly

nonlinear) link function. This allows the response probability distribution to

be any member of the exponential family (EF) of distributions.

A GLM consists of the following three components:

1. The response Y has a distribution in the EF, with density function

taking the form

f(y; θ, φ) = exp
{∫ [

y − µ(θ)
]

φV (µ)
dµ(θ) + c(y, φ)

}
, (2.1)

where θ is called the natural parameter, φ is a dispersion parameter,

µ = µ(θ) = E(Y ) and V(Y ) = φV (µ), for a given variance function V

and known bivariate function c. The EF is very flexible and can model

continuous, binary, or count data.

2. For a random sample Y1, . . . , Yn, the linear component is defined as

ηi = X ′
iβ , i = 1, . . . , n , (2.2)
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for some vector of parameters β = (β1, . . . , βp)
′ and covariate X i =

(xi1, . . . , xip)
′ associated to the observation Yi.

3. A monotonic differentiable link function g describes how the expected

response µi = E(Yi) is related to the linear predictor ηi

g(µi) = ηi , i = 1, . . . , n . (2.3)

Example 2.1 GLMs commonly used in insurance data

Table 1 below gives the different model components of the GLMs most com-

monly used in insurance data for observed claim counts or claim severities.

Y ∼ Normal(µ, σ2) Gamma(α, β) Poisson(λ) Bin.(m, q)/m

E(Y ) = µ(θ) θ = µ −θ−1 = α
β

eθ = λ eθ

1+eθ = q

V(Y ) = V (µ)φ σ2 1
θ2 α

= α
β2 eθ = λ q (1−q)

m

V (µ) 1 θ−2 eθ = λ q(1− q)

φ σ2 α−1 1 1/m

c(y, φ) − 1
2
[ y2

σ2 + ln(2πσ2)] α ln αy + ln y − ln Γ(α) − ln(y!) ln
(

m
m y

)
Link g identity reciprocal log logit

Table 1: GLM Examples

Additional examples include inverse Gaussian and negative binomial ob-

servations, as well as multinomial proportions, etc. (for details see McCullagh

and Nelder, 1989).
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Maximum likelihood estimation (MLE) is used to estimate the parameter

β. For an observed independent random sample y1, . . . , yn, consider the log–

likelihood of β:

l(β) = ln L(β) =
n∑

i=1

{∫ [
yi − µi(θ)

]
φV (µi)

dµi(θ) + c(yi, φ)
}

(2.4)

and its derivative:

dl(β)

dβ
=

n∑
i=1

dl(β)

dµi

dµi

dβ
=

n∑
i=1

(yi − µi)

φV (µi)

dµi

dX ′
iβ

dX ′
iβ

dβ
,

where

dµi

dX ′
iβ

=
dg−1(X ′

iβ)

dX ′
iβ

=
1

g′(µi)
.

Hence

dl(β)

dβ
=

n∑
i=1

(yi − µi)

φV (µi)

1

g′(µi)
X ′

i . (2.5)

Note that if Yi has a normal distribution, then g′(µi) = 1, and V (µi) = 1

for all i. Setting dl(β)
dβ

= 0 yields
∑n

i=1 X i(yi − X ′
iβ) = 0. In other EF

cases, no closed form solution is available to this system of p equations.

Instead, the maximum likelihood estimator (MLE) is obtained numerically,

using iterative algorithms such as the Newton–Raphson or Fisher scoring

methods (for details see McCullagh and Nelder, 1989).
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3 A Loss Reserving Model within the Frame-

work of GLMs

This section gives a detailed description of our loss reserving model within

the framework of GLMs.

Definition 3.1 The loss function l(t) is a stochastic process which represents

the rate at which losses are occurring at time t.

A loss function l(t) tells us how losses occur, which is determined by in–force

risk exposure and seasonality of the distribution of the risk exposures. A

detailed reference of exposure bases is Bouska (1989). In practice we cannot

observe l(t) directly. However, we can approach the expected value of l(t), by

in–force exposure, as it directly depends on the premium emergence pattern.

Definition 3.2 An aggregate loss L(t1, t2) occurred in the time period (t1, t2)

can be written as

L(t1, t2) =

∫ t2

t1

l(t)dt. (3.1)

Definition 3.3 The loss development function D(t) is a stochastic process

which represents the percentage of losses that are paid within t years after the

loss occurrence.
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It is clear that D(t) = 0 for t ≤ 0, and limt→∞D(t) = 1 almost surely. For

a given time T > t, then l(t)D(T − t) represents the aggregate paid amount

at T for losses occurred at time t. Assuming that the process has continuous

sample paths, by integrating these aggregate paid amounts over (t1, t2), we

have the following definition (see Figure 1 for a time–diagram reference).

0 t1 t

l(t)

t2 T

l(t)D(T − t)
j

Figure 1: Time Scale

Definition 3.4 Given a loss function l(t) and a stochastic loss development

function D(t), the aggregate paid losses from the losses incurred in period

(t1, t2), as developed to time T ≥ t2 > t1, are defined as

L(T, t1, t2) =

∫ t2

t1

l(t) D(T − t) dt . (3.2)

The integrals in (3.1) and (3.2) give the ultimate losses and the paid losses

incurred in period (t1, t2). Their difference, L(t1, t2) − L(T, t1, t2), is the

unpaid losses, or also called loss reserves.

Definition 3.5 Given a loss function l(t) and a loss development function

D(t), the loss reserves for claims incurred in period (t1, t2), as developed to

8



time T ≥ t2 > t1 are defined as

R(T ) = L(t1, t2)− L(T, t1, t2)

=

∫ t2

t1

l(t) [1−D(T − t)] dt . (3.3)

In the case of discounted reserves, we need to add a discount factor in

the above analysis. Let δ(t) be the stochastic force of interest at time t.

Again, assuming continuous sample paths, then B(t) =
∫ t

0
δ(s) ds defines the

aggregate interest rate in the period of (0, t), and more generally, B(T + t)−

B(t) =
∫ T+t

T
δ(s) ds is the aggregate interest rate over (T, T + t).

Here loss reserves are no longer obtained by difference. Instead, first

consider a fixed time t, where t1 < t < t2, at which losses of l(t) are incurred.

Then l(t) d(s − t) ds of these will develop at future instant s > t, where we

assume that d(t) = D′(t), almost surely. Hence, the discounted value at

an evaluation date T in (t, s) (see Figure 2 for a time–diagram reference)

is given by e−[B(s)−B(T )] l(t) d(s − t) ds. Finally, integrating over all future

development times s ∈ (T,∞) yields the definition below.

0 t1 t t2 T s
*�

Figure 2: Evaluation Time T
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Definition 3.6 Given a loss function l(t), a stochastic loss development

function D(t), a stochastic aggregate interest rate B(t), and any evaluation

date T , the discounted value at time T of the unpaid loss reserves from period

(t1, t2), as developed to T ≥ t2 ≥ t1, is given by

Z(T ) =

∫ t2

t1

l(t)

∫ ∞

T

e−[B(s)−B(T )] ∂

∂t
D(s− t) ds dt , (3.4)

almost surely.

Equations (3.3) and (3.4) give the formulas of the loss reserves and dis-

counted loss reserves, respectively. In fact, note that when the aggregate

interest rate B(t) = 0, i.e. without discounting, then (3.4) reduces to (3.3),

since limt→∞D(t) = 1 almost surely.

To conclude the definition of this loss reserving model, introduce the

following assumption to calculate the expected value of the processes in (3.3)

and (3.4).

(A1) The loss function l(t), the loss development function D(t) and the force

of interest δ(t) are independent.

Assumption (A1) directly implies the following result.
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Theorem 3.1 Given E[l(t)], E[D(t)] and E[B(s)] for fixed t and s, then

E[R(T )] =

∫ t2

t1

E[l(t)]
{
1− E[D(T − t)]

}
dt , T ≥ t2 > t1 , (3.5)

E[Z(T )] =

∫ ∞

T

e−E[B(s)]

∫ t2

t1

E[l(t)] E
[ ∂

∂s
D(s− t)

]
dt ds . (3.6)

It is clear that the loss reserves only depend on the expected loss function

and loss development function. We will use the GLMs to estimate these two

functions.

In practice, loss and development functions can be very complex. Even

when long historical data is available, the development process itself can

change with time. The future force of interest is also unknown. In addition to

the assumption (A1) above, the following additional assumptions are needed:

(A2) All policy periods are one year and the amount of exposure to risk of

an insurance policy spreads uniformly over the policy period.

(A3) The expected value of the loss development function D is of the form

of E[D(t)] = 1− a−t, where a > 1 is a constant.

(A4) The future force of interest is a known constant δ ≥ 0.

The average settlement time is a key parameter for loss development. Based

on Assumption (A3), above, we can give estimate this parameter within the

framework of GLMs.
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Lemma 3.1 Given Assumption (A3), the expected average loss development

time is E(τ) = 1
ln a

, for a > 1.

Proof : The expected average loss development time is given by:

E(τ) =

∫ ∞

0

[1−D(t)] dt =

∫ ∞

0

dt

at
=

1

ln a
.

2

The motivation for assumption (A1) is to estimate the expected values

of the loss function, E[l(t)], of the loss development function, E[D(t)], and

of the discount rate E[B(s)], separately. These can then be substituted into

(3.5) and (3.6) to estimate the expected loss and discounted reserves. As-

sumption (A2) can be relaxed for seasonality or other distributional patterns.

Assumption (A3) states that E[D(t)] takes the form of the cumulative distri-

bution function (CDF) of an exponential distribution, which is appropriate

for high–frequency/low–severity business lines, such as auto insurance. For

heavy tail cases such as liability claims, the CDF of a Weibull or Pareto

distribution are good candidates for the loss development function.

With all these assumptions, we could estimate the expected value of the

loss function l(t) and the loss development function D(t) within the frame-

work of GLMs. The key aspects are the modelling of the number of claims

n and the claim severity as independent responses of GLMs.
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Consider a set of observed claims under some classification system. Let

cell i denote a generic class defined by this classification system. The GLMs

for frequency and severity can be written as follows. Let

• fi be the frequency in cell i,

• zi be the claim severity in cell i,

• τi be the average settlement time in cell i,

• wi(t) be the number of exposures (policyholders) in cell i at time t,

• ηfi, ηzi and ητi be linear predictors of claim frequency, severity and

average settlement time in cell i, respectively.

• gf , gz and gτ are the GLM link functions for the claim frequency, sever-

ity and average settlement time, respectively.

Then, for each cell i, the GLMs give the expected value of the claim frequency,

severity and average settlement time as:

E(fi) = g−1
f (ηfi) , (3.7)

E(zi) = g−1
z (ηzi) , (3.8)

E(τi) = g−1
τ (ητi) . (3.9)
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Combining (3.9) with Assumption (A3) and Lemma 3.1 gives

g−1
τ (ητi) =

1

ln ai

⇒ ai = exp
{ 1

g−1
τ (ητi)

}
.

Now with Assumption (A2), we get that the expected total loss rate E[li(t)]

and loss development function E[Di(t)] in cell i at time t are:

E[li(t)] = wi(t) g−1
f (ηfi) g−1

s (ηsi) , (3.10)

E[Di(t)] = exp
{ 1

g−1
τ (ητi)

}
. (3.11)

Then (3.5) and (3.6) give the expected loss and discounted loss reserves in

cell i:

E[Ri(T )] =

∫ t2

t1

li(t)
{
1− E[Di(T − t)]

}
dt . (3.12)

E[Zi(T )] =

∫ ∞

T

eδ(s− t)

∫ t2

t1

E[li(t)] E[
∂

∂s
D(s− t)] dt ds . (3.13)

Hence, summing over all cells in the portfolio we have the total loss and

discounted loss reserves

E[R(T )] =
∑

i

E[Ri(T )] , (3.14)

E[Z(T )] =
∑

i

E[Zi(T )] . (3.15)
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4 Conclusion

This paper establishes a structural loss reserving model within the frame-

work of GLMs. It enables the estimation of the loss reserves on an individual

basis. Compared to traditional models based on loss development triangles,

this GLM approach gives more detailed information, such as the premium

exposure emergence pattern, the loss emergence pattern and the loss devel-

opment pattern. The GLM model also gives a more detailed estimation of

the loss reserves.
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