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ABSTRACT 

This paper critiques and supplements Professor Schuette's "Linear Programming Approach to 

Graduation". The main points are: 

 

(1) The graduation is a problem of estimating the mean vector of a multivariate variable under 

certain assumptions. Schuette and other discussants emphasized the robust-ness property 

of their proposed estimation. This paper points out their mistake and suggests some 

correcting directions based on Bayesian theory. 

 

(2) This paper provides a more complete theoretical rationale for the parameter choosing in the 

graduation problem. 

 

(3) This paper points out the incompleteness of a theorem's proof in Schuette's paper and 

supplements some interpretations and mathematical details for the proof of some other 

theorems from a different viewpoint. 

1. INTRODUCTION 

Let , x=1, 2, ..., n be a set of observed or ungraduated values, ux, x=1, 2, …, n be a set of 

graduated values sought for the corresponding . 

Schuette (1978) proposed 

(a)  should be calculated so as to minimize 

 

 

instead of the traditional Whittaker (1944) method of minimizing 

  . 
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(b) The minimization problem in (a) can be reformulated as a linear programming (LP) 

problem: 

 

 

 

(c) There exist  and  such that a graduator should try various values of  between these 

two values to solve the minimization problem until he feels the resulting graduated values 

satisfactory. 

 

This paper will (I) discuss the statistical foundation problems surrounding (a) and (c), which 

were either vaguely or incorrectly stated in Schuette paper and its discussions; (II) point out an 

error about  and supplement some explanations which were either omitted or chosen not to be 

presented surrounding (b) and  in Schuette's paper; and (III) state some concluding remarks and 

suggest possible problems for further research. 

 

Section 2, 3, 4 of this paper serve the purpose of the foregoing (I), (II) and (III) respectively. 

 

The reader is assumed to have a copy of Schuette (1978) paper and discussions at hand. 

2. STATISTICAL FOUNDATION PROBLEMS 

2-1. Graduation Formulated as a Bayesian Estimation problem. 

 

Let u denote the vector of  and u" denote the vector of . Whittaker (1944) essentially 

assumed  iid  with density 

 

 

 

u has a prior  

 

The posterior density of u is then 
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Under the utility function 

 

the Bayesian estimator, or the graduated values should be the mode of the posterior distribution of u, 

which is equivalent to the u that minimizes 

 

 

 

Noting that the prior density of u is singular, Hickman (1978) commented:"…while singularity 

is not a disastrous quality for a prior…, the justification for its use in this case is not immediately 

apparent." 

 

Kimeldorf and Jones (1967) offered a revision to the foregoing model: Likelihood function 

and loss (utility) function remained the same, but the prior density is modified to 

 

 

If A is assumed to be   then 

 

 

When the graduator's prior opinion on the level of graduated values is vague, meaning , but 

his prior opinion on the shape of graduated values is strong, meaning , Kimeldorf and Jones 

model will reduce to Whittaker's model under the assumption that  for all x and both 

models use the same wx. Hickman (1977) and Hickman (1979) provided some further refinements 

to the Kimdeldorf and Jones model.  

2-2. The Problem of Robustness. 

 

Schuette motivated his proposal (see section 1 of this paper) with preference to the 

"robustness" of absolute deviation vs. least square minimization procedures for solving regression 

problems in statistics. This section intends to clarify the "robustness" issue within the context of 

Bayesian Estimation as described in section 2-1 of this paper. 

p 
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Realizing that Schuette and discussants of this paper were making their points with classical 

robust estimation in their mind, the following discussion will (1) provide a background of key 

concepts in the recently developed literature concerning classical robust estimation; (2) extract the 

main ideas from the literature just beginning to appear concerning Bayesian robust estimation; (3) 

pinpoint the vagueness and incorrectness of Schuette and the discussants; and will in Section 2-3 

show that based on (2): models described in 2-1 can not be considered robust, Schuette’s model as 

described in 1 possesses certain part but not all of the robust properties, and a model suggested by 

Ramsay (1980) can be adapted to a robust version of the graduation models in 2-1. 

2-2-(1). Key Concepts in Classical Robust Estimation. 

 

The key concepts in classical robustness are itemized as (C1), (C2), (C3), (C3'), (C4), (C5),  

(C6), (C7) and described in Appendix I. 

2-2-(2): Ideas on Bayesian Robust Estimation. 

 

The main ideas in Bayesian robustness analogous to the classical ones are itemized as (B1), 

(B1'), (B5), (B6), (B6'), (B7), (B8) and described in Appendix II. 

2-2-(3). Criticism of Schuette and Discussants. 

 

i. Hickman touched the issue of robustness by merely pointing out that robustness 

considerations existed as early as Edgeworth (1888). From the foregoing descriptions in 

2-2-(1) and (2), we can see modern research on robustness is much more concrete and 

systematic than a mere ad hoc consideration. 

 

ii Klugman (1978) suggested an estimate developed by Huber (1964), referred as  in the 

literature, be used. This estimation procedure would replace the 

 

 

 

 

is some value between 1 and 2, .            . 
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We have to note that: 

(a)  was developed to minimize the maximal asymptotic variance over a restricted 

neighborhood of the standard normal. as described in (C3). It may not be optimal in the 

sense of (B3). 

(b) There are other robust estimators performing better than  with respect to (C1). (C2), 

(C3'), (C4), …, (C7) and nearly as good as  with respect to (C3). Hampel (1974) 

compared various robust estimators for a standard normal mean. 

 

(c) Huber (1977) pp.36-37 showed that for any robust estimators to work for regression 

problems, the ratio of the number of parameters to the number of observations must 

vanish rapidly as the latter goes to infinity. In our case of graduation, this ratio is always 

1. 

 

(d) Klugman (1979) used  to estimate the crude mortality rate. It is a completely different 

problem from a graduation or smoothing problem that we are discussing about. 

 

iii. Klugman (1978) seemed to indicate an inconsistency between robustness and smoothing 

data with some large true underlying  values. But (B5), (B6) and (B7) are exactly to 

deal with "some small residual or hedging probability for parameter values considerably 

removed from those considered most probable" (Ramsay (1980), p.902). 

 

iv. Greville (1978) stated: "He (Schuette) has given cogent reasons why the criterion of least 

absolute values should be considered as an alternative to least squares ...". Actually, 

Schuette merely vaguely mentioned this criterion in the regression problem and had not put 

the robustness consideration within the proper framework as described in II-1. We will 

show later in 2-3-(1) that the Whittaker's least square criterion (see 2-1) is indeed not robust 

in the proper context of Bayesian estimation. 

2-3. Robust Graduation as Robust Bayesian Estimation. 

2-3-(1). Whittaker's model and Kimdeldorf & Jones' model as described in 2-1 can not be 

considered robust in the sense that they do not satisfy (B5), (B5'), (B7), (B7') and (B8); 
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they satisfy (Bl'). 

2-3-(2). Schuette version (l-(a)) satisfies (Bl'), (B5), (B5') but not (B6), (B6'), (B7), (B7') and (B8). 

2-3-(3). Ramsay (1980) proposed a robust version satisfying all of (B1'), (B5)-(B7') for the 

regression problem: 

 

 =inversed chi-square. 

 

It can be easily adapted as a robust version for Kimeldorf and Jones graduation model (2-1) by 

making n=p, X=I,  Due to the lack of mathematical rigor, 

this proposal is meant to be a tentative one. 

2-4. The choice of . 

As indicated by Hickman (1978),  as a parameter defining the prior density as described in 

2-1 should be fixed and known a priori by the estimator. If the procedure in l-(c) means  is 

unknown or vaguely known, then  itself should have a density h( ), the posterior density of u 

then is 

 

 

 

This is also the underlying principle used by Lindley (1981) for his "Bayes Empirical Bayes" 

approach. 

 

However, if the purpose of trying different  is to test the robustness of the procedure near 

the neighborhood of assumed fixed , it is comparable to the sensitivity analysis in many decision 

models. As Kadane (1978) argued:" A well-known principle of personalistic Bayesian theory is that 

no one can tell someone else what loss function to have or what opinion to hold. Having said that, 

the reasons for looking into properties of particular choices of loss functions and opinions might be 
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obscure. The standard of personalistic Bayesian theory may be too severe for many of us. Generally 

when a personalistic Bayesian tells you his loss function and opinion, he means them only 

approximately. He hopes that his loss function and opinion, he means them only approximately. He 

hopes that his approximation is good, and that whatever errors he may have made will not lead to 

decisions with loss substantially greater than he would have obtained had he been able to write 

down his true loss function and opinion." 

 

Ramsay (1980) argued for thick tailed prior:"… even if the analyst's own beliefs are properly 

represented as short-tailed, dialogue with other investigators who have significant prior probability 

for values for which the analyst's own prior density is nearly zero may be desirable. … Thus in a 

spirit of compromise and to avoid accusations of too much subjective bias, the analyst may be led 

to choose thicker tails. Berger (1981) and DeGroot (1974) provided an operational procedure for a 

group or team of analysts to reach consensus on the prior distribution of parameters. These can be 

used to argue for doing sensitivity analysis on  which is supposed to be fixed and known a priori. 

However, Klugman (1980)'s approach is questionable. 

3. PROBLEMS RELATED TO LINEAR PROGRAMMING THEORY 

Theorem numbers, relationship statement numbers and notations in Schuette's paper will be 

referred without explanation. 

3-1.  is a necessary but has not been proved to be sufficient condition for the graduated 

values to be the same as the observed values. 

The statement of Theorem 1 that  sufficient is incorrect. The following diagram 

indicates that necessity but not sufficiency has been proved in the proof of Theorem 1: (see Figure 1) 

x x
u u ′′= for all x  implies 

(17),(18),(19),(20).Also (17),(18) implies (19),(20).  

The fact that (19)=(21), 

(20)=(22) makes 
x x

u u ′′=  for all x  

imply (21),(22), which implies θ≤θL .Therefore x x
u u ′′= for all x  

implies θ≤θL. The foregoing has been proved. 
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θ≤θL implies (21), (22), but (21)=(19), (22)=(20) has not been proved to imply (17), (18) and 

hence not been proved to imply (17), (18), (19), (20), and hence not been proved to imply ux=ux'' 

for all x. Therefore θ≤θL has not been proved to imply ux=ux'' for all x. (The right    ) 

The “not been proved” means there is no proof rather than the proof is invalid. 

 

 

 

 

 

( F i g u r e  1 )  
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Both the primal and dual problem are assumed to have no degeneracy. 

 

3-2. Interpretation about Theorem 2 and "linear programming graduation strategy" in terms 

of duality and optimal conditions: Schuette noted: " ... some of the later sections of this 

(Schuette's) paper could have been presented in terms of the dual problem and its 

variables, but the author has chosen not to do so." The following will supplement what he 

chose not to do. 

 

Step 1. For a sufficiently large . presumably (not proved) we can find an optimal solution such 

that    n-z. Section 3-3 will prove the 

meaning of this solution. 

 

Step 2. Find the shadow prices  of the optimal solution found in step 1. 

 

Step 3. Define =  found in Step 2. 

 

Step 4. For any  the optimal solution found in Step 1., i.e. the  that minimizes 

 

will also be minimizing 

 

i.e. be the optimal solution of using  in the objective function rather than the  used in Step 1. 

 

Proof of Step 4:  

We will prove that the solution found in Step 1 will be an optimal solution for the dual 

problem & the primal problem. The primal problem is (1-(b)), . 

 

Primal Feasibility: 

Since , the primal constraints are satisfied as the primal constants 

in step 1.  appears in the constraints; its value does not matter. 
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Dual Feasibility: 

(i) Since , the constraints dual to the primal variables , are 

satisfied. (cf. last four 1ines of the proof of theorem 2 in Schuette's) 

 

(ii) Constraints dual to the primal variables Pj, Nj have been satisfied as the dual constraints for 

optimal Pj, Nj in the primal problem of step 1, in which  does not appear at all. 

. 

 

Complementary Slackness: 

(i) Complementary Slackness for the variable  has been satisfied because the jth constraint 

in the primal problem is equality for all   

appears in the constraints, but its value does not matter. 

 

(ii) Complementary slackness for the variable Pj, Nj is satisfied as the complementary 

slackness for the complementary slackness for the Step 1 primal problem, in which  does 

not appear.  

 

(iii) Complementary slackness for  is satisfied because  appears in the 

slackness but its value does not matter.                    . 

 

The foregoing arguments are based on Bradley et al. (1980). 

3-3. The meaning of the optimal solution found in step 1.3-2. 

 

Meaning: the solution represents a polynomial of degree lower than z-l that 

(i) minimizes                  

 

(ii)     for at least '

x
z s  

 

(iii)  

 

where   is the polynomial. 

, 

, 
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Proof: 

(i) Since the LP problem is equivalent to and is a reformulated version of the problem: 

 

now the solution reduces the second part of the second part of the sum to zero, (i) follows. 

 

(ii) Since the rank of constraint matrix ((9) of Schuette's paper) is n-z, there can be at most n-z 

positive  or  …, n, hence there must be at least z zero . 

(ii) follows. 

 

(iii) The solution satisfies 

 

and hence satisfies the linear difference equations homogeneous of order z: 

 

It will be shown below that solutions to this linear difference equation has the general form 

q(x). 

 

 

Proof: , m =0,1,2, …, k. 

 

Lemma 2.  is a solution to  as defined in 
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Lemma 1. 

 

Proof:  can be expressed as a linear combination of x, x(x-1), …, x(x-1) … (x-m+1). 

 

Lemma 3.  0 solutions of general from , 

  

 ,x=n-z, …, n. 

 

Proof: Treated as a special case of Lemma 2, p(v)= , , 

x=n-z, …, n}, m=0,1, …, z-1 is a set of solutions for . They are linearly 

independent because the Wronskian. 

 

 

 

 

 

 

 

 

Therefore any solution can be expressed as a linear combination of these z solutions, the 

lemma follows. 

Our desired result (iii) follows by applying Lemma 3 to each  and 

finding out that their general solutions are consistent. Lemma 1 to 3 are adapted from Henrici 

(1964). 

4. CONCLUSION 

McGill (1982) discussed construction of 1980 CSO Mortality tables and the effect of 

graduated mortality rates on various life insurance business and public policy decisions. Cummins 

(1981) mentioned estimation of mortality for group life insurance. Therefore it is important to use 

graduation method with solid statistical ground and being robust to the gross errors in the crude 

data. Cohen and Fisher (1982) emphasized the importance of and insights given by duality and 

optimal conditions. This paper reaffirmed their emphasis. 

 

This paper pinpointed some vagueness and incorrectness of an important part of 
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actuarial/insurance/statistical theories literature so that future readers would not be misled. Further 

clarifications based on future theories possible. 

Appendix I. The Key Concepts in Classical Robust Estimation 

 

According to Huber (1977), "robustness signifies insensitivity against small deviations from 

the assumptions." Box and Tiao (1973) gave some philosophical interpretation. 

 

Tukey (1960) gave an illuminating example: 

If the assumption that  iid  is slightly deviated to a mixture of   and  

 either due to   gross errors in the data or due to the longer tail of the true 

underlying distribution, then the asymptotic relative efficiency of estimator for    to  

 will change from .876 when to 2.035 when  .Therefore 

 is very sensitive to small deviations from the assumptions and is not a robust estimator. 

 

The following mathematical descriptions are synthesized from Huber (1972, 1977, 1981) and 

Hampel (1971, 1974). A Monte Carlo experiment on these theories was reported in Andrew  

et al.(1972). Hogg (1979) provided a recipe for some classical robust estimation procedures. 

 

Let  be a measurable space such that  is a complete separable metric space with 

metric d and  denotes the σ-algebra generated by the topology. Let  denote the set of all 

probability measures. defined on   . For any  , let   denote the set .  

 . The Prohorov distance between F and  , 

denoted by   ,is defined to be  , ,. ,, 

A  ·of  denoted by  , is defined to be  

 

 

 

We are primarily interested in  , the real line and we will use the notation F for both a 

distribution function and the probability measure induced by it. 

 

  is defined to  the empirical distribution of a sample  . 

 

A sequence of estimators  is defined to be a sequence of measurable mappings 

, e.g. sample mean .  The distribution of  is denoted by  . 

 is said to be qualitatively robust at   iff  
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Intuitively, (Cl) means that a small deviation of the true F from the assumed   will have only a 

small effect on the functional value of . 

 

In fact, a mapping   is continuous everywhere if and only if, 

(i) is consistent for T(F), i.e.  

 in probability . 

& (ii)   is qualitatively robust at all . 

 

Thus, for a continuous T, we are further interested in the bias of   under F against  ,  where 

 is the assumed distribution: = median of  

And "variance" of  under F: 

 

 

 

 

 

 

 

 

The asymptotic maximal bias and variance are defined respectively as: 

 

 

 

 

 

 

The maximal asymptotic bias and variance are defined respectively as: 
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In general, we have 

. 

Usually, the equality holds under "regular" conditions. Other than (Cl), robustness requires small 

(C2) and (C3). Moreover, 

defined above should not be too far from            . 

. 

 

 

 

should be high. Intuitively,  gives the maximum fraction of gross errors that the estimation still 

make some sense. For example, the α-trimmed mean 

 

 

 

has a breakdown point α at standard normal. 

The influence curve of T at  is defined as 

 

 

 

 

where  is distribution with mass 1 at x. 

 

Intuitively, this measures the effect of one additional observation x in a very large sample 

under distributions . 

(C5) Gross error sensitivity of T at  

 

 

 

is to be small for a robust T at  Under certain conditions, 

 

 

 

(C6) Local shift sensitivity of T at  

∼
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is to be small. It measures the effect of wriggling (rounding or grouping) data. Wriggling can 

be thought as taking out x and throwing a nearby y in a sample.  

 

(C7) Rejection point   of T at  should be set. Beyond , 

an observation will implicitly rejected as an outlier. Note                       . 

 

Appendix Ⅱ. The Main Ideas in Bayesian Robust Estimation. 

 

Let   denote the density of observations   cond. on 

parameters.    viewed as a function of . Both  and m are referred as 

likelihood function of observations. Let p( ) denote the prior density of   denote the 

utility of estimator t about . 

The posterior density of  given y is then 

 

 

Bayes estimator is to minimize 

 

 

 

over all possible t. 

 

Thus the couple   or the triple   uniquely defines a t for any given y. 

 

Kadane (1978), refining the ideas of Edwards, Lindeman and Savage (1963), Fishburn et al. 

(1967), Pierce and Folks (1970) and Dempster (1975), defined  

 

(B1) (U, f) to be stable if and only if for any y for every    in distribution and every  
uniformly in t and , if  +  then 
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Intuitively, (B1) means a small change in U and f will have a small effect on the average utility of 

the Bayes estimators. 

 

Kadane further showed that if   is bounded and continuous in t uniformly in , 

then (U, f) stable with any f. 

 

is bounded and continuous in t uniformly in U except at t= . 

 

The Bayes estimate defined by   is the mode of f and its Bayes utility is sup  

for any given y. 

 

(B1) is comparable with (C1). 

 

The concept "bias" does not seem to apply in Bayesian estimation. In fact, Britney and 

Winkler (1974) showed cases that true value of a parameter was far from optimal if the loss 

function (utility function) was asymmetric. 

 

(B3)  Concept comparable to  (C3)  seems to require the minimum of   over a 

neighborhood of assumed   be as large as possible for a robust t, Section 10.11 of 

DeGroot (1970) showed that under certain conditions, for   iid any posterior density is 

asymptotically proportional to  
 

as  where    is the maximum likelihood estimator and  
 , the "Fisher information matrix"                   . 

 

(B3') Concept comparable to (C3') would require that an estimate determined by the robust 

version of  wouldn't be too far from optimal under the assumed version. 

 

(B3) and (B3') have not been used as a starting point to derive Bayesian robust estimators in 

the literature, although they are examined numerically after some estimators have been derived. 

Concepts comparable to (C5)-(C7) are developed in Ramsay (1980) but much less rigorously.   
assumed iid.  
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Heuristically, they mean "thick tail" densities, or probability vanishes very slowly over values 

with probabilities (extreme values) and eventually remain constant. They are supposed less 

sensitive to one additional extreme value. Berger (1984) and Berger (1980) interprets Rubin (1977) 

that one way to develop robust prior is to have 

 

 

. 

. 

. 
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