

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

Household's Life Insurance Demand a Multivariate Two Part Model

> Edward (Jed) W. Frees Yunjie (Winnie) Sun

School of Business, University of Wisconsin-Madison

July 30, 2009

Outline

ARC 2009 Yunjie (Winnie) Sun

Introduction Data

Statistical Models Conclusion

The End!

2 Data

Onclusion

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

Objective

To understand characteristics of a household that drive life insurance demand with more sophisticated analytical techniques

Data

- 2004 Survey of Consumer Finance
- Build on the work of Lin and Grace (2007) by using covariates that they developed

Model features

- Two part Model
 - Frequency model Whether or not to have life insurance
 - Severity model The amount of insurance a household demands given they decide to have life insurance
- Multivariate Model
 - Term life insurance
 - Whole life insurance

Important finding

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

Objective

To understand characteristics of a household that drive life insurance demand with more sophisticated analytical techniques

Data

- 2004 Survey of Consumer Finance
- Build on the work of Lin and Grace (2007) by using covariates that they developed

Model features

- Two part Model
 - Frequency model Whether or not to have life insurance
 - Severity model The amount of insurance a household demands given they decide to have life insurance
- Multivariate Model
 - Term life insurance
 - Whole life insurance

Important finding

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

Objective

To understand characteristics of a household that drive life insurance demand with more sophisticated analytical techniques

Data

- 2004 Survey of Consumer Finance
- Build on the work of Lin and Grace (2007) by using covariates that they developed

Model features

- Two part Model
 - Frequency model Whether or not to have life insurance
 - Severity model The amount of insurance a household demands given they decide to have life insurance
- Multivariate Model
 - Term life insurance
 - Whole life insurance

Important finding

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

Objective

To understand characteristics of a household that drive life insurance demand with more sophisticated analytical techniques

Data

- 2004 Survey of Consumer Finance
- Build on the work of Lin and Grace (2007) by using covariates that they developed

Model features

- Two part Model
 - Frequency model Whether or not to have life insurance
 - Severity model The amount of insurance a household demands given they decide to have life insurance
- Multivariate Model
 - Term life insurance
 - Whole life insurance

Important finding

Motivation

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models Conclusion

The Endl

• Life insurance demand literature:

- How much life insurance protection a household would seek given their economic and demographic structure (see Goldsmith (1983), Burnett and Palmer (1984) and Lin and Grace (2007))
- Tobit and OLS are widely applied.
- Term and Whole life insurance are substitutes.

Two part model

- Analogous to decision making process
- Allow for different explanatory variables for frequency and severity models respectively

Multivariate models

- Model two dependent variables simultaneously
- Examine the substitutes or complements effect of term and whole life insurance

Motivation

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

• Life insurance demand literature:

- How much life insurance protection a household would seek given their economic and demographic structure (see Goldsmith (1983), Burnett and Palmer (1984) and Lin and Grace (2007))
- Tobit and OLS are widely applied.
- Term and Whole life insurance are substitutes.

• Two part model

- Analogous to decision making process
- Allow for different explanatory variables for frequency and severity models respectively

Multivariate models

- Model two dependent variables simultaneously
- Examine the substitutes or complements effect of term and whole life insurance

Motivation

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

• Life insurance demand literature:

- How much life insurance protection a household would seek given their economic and demographic structure (see Goldsmith (1983), Burnett and Palmer (1984) and Lin and Grace (2007))
- Tobit and OLS are widely applied.
- Term and Whole life insurance are substitutes.

• Two part model

- Analogous to decision making process
- Allow for different explanatory variables for frequency and severity models respectively

Multivariate models

- Model two dependent variables simultaneously
- Examine the substitutes or complements effect of term and whole life insurance

ARC 2009

Yunjie (Winnie) Sun

- Welcome!
- Introduction Data
- Statistical Models Conclusion The End!

- Survey of Consumer Finances (SCF) data
 - A triennial survey of U.S. families conducted by the Federal Reserve
 - About 4000 household level ("primary economic unit") observations during each survey period
 - A probability sample of the U.S. population
 - Extensive demographic and economic characteristics of the households as well as their behavioral aspects such as the motive to leave a bequest
 - Limitations
 - Life insurance information is aggregate.
 - No information about when the life insurance was purchased.

Data

2009

Yuniie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models Conclusion The End!

- Dependent variable
 - Frequency Part (2150 observations)
 - Term life insurance indicator (65.86%)
 - Whole life insurance indicator (33.40%) *19.72% have both types of insurance
 - Severity Part (1710 observations—Life insurance purchasers subsample)
 - Face amount of term life insurance (Median \$270,000)
 - Net Amount at Risk (NAR) of whole life insurance (Median \$202,500) *Positively correlated

4e+05 6e+06 80+08

Whole

2009 Yunjie (Winnie) Sun

Welcome!

Introduction Data

Statistical Models Conclusion The End! We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

Cash and cash equivalents, mutual funds, stocks, bonds, annuities, individual retirement accounts, real estate, and other assets

Debts

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

- Debts
- Age

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

- Debts
- Age
- Education

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

- Debts
- Age
- Education
- Income

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical Models

Conclusion

The End!

Data

We build on the work of Lin and Grace (2007) by using covariates that they developed.

• Financial Vulnerability Index (IMPACT)

Measures the adverse financial impact in terms of living standard decline upon the death of one member of the household on the rest

Assets

- Debts
- Age
- Education
- Income
- Bequests (48.8%), Obligations (58.9%), and Inheritance

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Data

Statistical Models Conclusion

The End!

Table 1. Summary Statistics									
Variable	Minimum	25th Percentile	Median	75th Percentile	Maximum				
FACETerm	0.8	100	270	1,000	150,000				
NAR	0.66	60.25	202.5	900	45,000				
CASHEQV	0	3	17	98	32,628				
FUND	0	0	0	20	57,500				
STOCK	0	0	0	50	200,000				
BOND	0	0	0	1	100,000				
RETIREMENT	0	0	52	272	35,000				
ANNUITY	0	0	0	0	200,000				
REALESTATE	0	127	350	1,294	194,380				
OTHASSETS	0	15	31	66	97,203				
DEBT	0	13	110	286	121,686				
INHERITANCEExp	0	0	0	0	906,060				
SALARY1	0	29	60	163	80,112				
SALARY2	0	0	13	40	2,700				
IMPACT	0	0.049	0.113	0.340	1265.02				
AGE	21	39.5	47.5	54.5	64				
EDUCATION1	1	12	16	17	17				
EDUCATION2	0	12	15	16	17				

*All the monetary variables are in thousands.

* Assets, debts, income and inheritance variables are logarithm transformed and indicator variables for zero values are added for these variables.

2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Statistical

Conclusion

The End!

Models

Data

Two part model

- $\mathbf{N}_i = (N_{i1}, N_{i2})$
 - N_{i1} indicator for whether household *i* purchases term life insurance
 - N_{i1} indicator for whether household *i* purchases whole life insurance
- $\mathbf{Y}_i = (Y_{i1}, Y_{i2})$
 - Y_{i1} the face amount of term life insurance demanded by household i
 - Y_{i2} the net amount at risk (NAR) of whole life insurance demanded by household i
- Decompose (\mathbf{Y}_i) into frequency and severity components

 $f(\mathbf{Y}_i) = f(\mathbf{N}_i) \times f(\mathbf{Y}_i | \mathbf{N}_i).$

- Frequency model $f(\mathbf{N}_i)$: Bivariate probit regression model
- Severity model $f(\mathbf{Y}_i|\mathbf{N}_i>0)$: Generalized linear model with a Gaussian copulas

2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data Statistical

Models

Conclusion

The End!

Two part model

- $\mathbf{N}_i = (N_{i1}, N_{i2})$
 - N_{i1} indicator for whether household *i* purchases term life insurance
 - N_{i1} indicator for whether household *i* purchases whole life insurance

•
$$\mathbf{Y}_i = (Y_{i1}, Y_{i2})$$

- Y_{i1} the face amount of term life insurance demanded by household *i*
- Y_{i2} the net amount at risk (NAR) of whole life insurance demanded by household i
- Decompose (Y_i) into frequency and severity components

 $f(\mathbf{Y}_i) = f(\mathbf{N}_i) \times f(\mathbf{Y}_i | \mathbf{N}_i).$

- Frequency model $f(\mathbf{N}_i)$: Bivariate probit regression model
- Severity model $f(\mathbf{Y}_i|\mathbf{N}_i>0)$: Generalized linear model with a Gaussian copulas

2009 Yunjie (Winnie)

Sun

Welcome!

Introduction

Statistical Models

Conclusior The End!

Data

Bivariate probit regression

- A bivariate probit regression model assumes the joint distribution of the bivariate binary choices is a standard bivariate normal distribution with a correlation coefficient ρ (see Ashford and Sowden (1970) and Meng and Schmidt (1985)).
- The log-likelihood of the *i*th observation is

$$\begin{split} l_i &= N_{i1}N_{i2}\ln F(\mathbf{x}'_i\beta_1, \mathbf{x}'_i\beta_2; \rho) \\ &+ N_{i1}(1 - N_{i2})\ln[\Phi(\mathbf{x}'_i\beta_1) - F(\mathbf{x}'_i\beta_1, \mathbf{x}'_i\beta_2; \rho)] \\ &+ (1 - N_{i1})N_{i2}\ln[\Phi(\mathbf{x}'_i\beta_2) - F(\mathbf{x}'_i\beta_1, \mathbf{x}'_i\beta_2; \rho)] \\ &+ (1 - N_{i1})(1 - N_{i2})\ln[1 - \Phi(\mathbf{x}'_i\beta_1) - \Phi(\mathbf{x}'_i\beta_2) + F(\mathbf{x}'_i\beta_1, \mathbf{x}'_i\beta_2; \rho)] \end{split}$$

where $F(\cdot)$ is the cumulative distribution function of the standard bivariate normal distribution with correlation ρ .

2009

Yuniie

(Winnie)

Sun

Welcome!

Introduction

Statistical

Conclusion

The End!

Models

Data

Empirical result - Bivariate Probit Regression

Whole Insurance (718) Term Insurance (1416) Parameter Estimate t-ratio Estimate t-ratio 0.6669 0.7241 -0.9387 -0.9923 Intercept Financial Vulnerability Index (IMPACT) 0 1696 2.6724 *** 0.0558 0.9688 Indicator for IMPACT > 4 -0 4730 -1.9327* -0 1623 -0.7268 Log (1+ cash and cash equivalent) 0.0304 1 5934 0 0424 2 1641 ** Indicator for Izero cash and cash equivalent -0.2411 -1.03590.2903 1.0687 Log (1+stock) -0.0522 -2 5445 ** -0.0369 -1 8554 Indicator for zero stock -0 4247 -1.8536 * -0.4773 -2.1600 ** ** ** Log (1+ bond) -0.0402 -2.4054 -0.0373 -2.3348 -0 4401 -2.6572 *** -0 5471 -3.5246 *** Indicator for zero bond 0.0309 1.2265 -0.0437 -1.7953Loa (1+ fund) ** Indicator for zero fund 0.3445 1 1329 -0 6971 -2 3807 Log (1+ annuity) -0.0724 -1 8533 0 0229 0.6204 Indicator for zero annuity -0.8718 -1 7882 0.0488 0 1072 Log (1+ retirement) 0.0244 1.0716 -0.0319-1.4329Indicator for zero retirement -0.1217 -0.4814 -0.3881 -1.5228 *** 2.2573 Log (1+ real estate) -0.2092-5.3364 0.0901 ** Indicator for zero real estate -2.5806 -5.6841 *** 1.7391 * 0.8182 Log (1+ other assets) 0.0376 1.3837 0.0114 0.4211 0.3720 1.1793 Indicator for zero other assets -0.3394-1.0141Loa (1 + debt)0.0563 2.3066 ** 0.0046 0.1822 Indicator for zero debt 0.1954 0.6560 -0.0019-0.0059** Average age of the couple 0.0575 2.2400 0.0035 0.1229 Squared average age of the couple -0.0006 -2.1053** 0.0002 0.6699 0.0577 3,4698 *** Education level of the resondent -0.0172-0.9852 Education level of the spouse 0.0212 1.3865 0.0141 0.8665 ** Log (1+ salary of the respondent) 0.0185 2.2804 0.0040 0.4896 ** Log (1+ salary of the spouse) 0.0140 2.3231 0.0148 2.4428 Log (1+ sizable inheritance expected) -0.0234-0.6409-0.0107-0.2944Indicator for zero inheritance expected -0.3234-0.6867-0.1723-0.3676Indicator for the desire to leave a bequest -0.0029-0.04220.1135 1.6806 Indicator for foreseeable major financial obligation 0.0748 1.2013 -0.0005-0.0082Rho -0.2849 -7.6676 *** Significant at 1% level

S)

** Significant at 5% level * Significant at 10% level

ARC 2009 Yunjie

(Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

	Term Insurance (1416)			Whole Insurance (718)		
Parameter	Estimate	t-ratio		Estimate	t-ratio	
Intercept	0.6669	0.7241		-0.9387	-0.9923	_
Financial Vulnerability Index	0.1696	2.6724	***	0.0558	0.9688	

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

• Financial Vulnerability Index only has impact on the frequency of term life insurance demand.

	Term Insurance (1416)			Whole Insurance (718)		
Parameter	Estimate	t-ratio		Estimate	t-ratio	
Intercept	0.6669	0.7241		-0.9387	-0.9923	_
Financial Vulnerability Index	0.1696	2.6724	***	0.0558	0.9688	

• In general, the more assets a household has, the less likely that the household demands life insurance.

Log (1+ cash and cash equivalent)	0.0304	1.5934		0.0424	2.1641	**
Indicator for zero cash	-0.2411	-1.0359		0.2903	1.0687	
Log (1+stock)	-0.0522	-2.5445	**	-0.0369	-1.8554	
Indicator for zero stock	-0.4247	-1.8536	*	-0.4773	-2.1600	**
Log (1+ bond)	-0.0402	-2.4054	**	-0.0373	-2.3348	**
Indicator for zero bond	-0.4401	-2.6572	***	-0.5471	-3.5246	***
Log (1+ fund)	0.0309	1.2265		-0.0437	-1.7953	*
Indicator for zero fund	0.3445	1.1329		-0.6971	-2.3807	**
Log (1+ annuity)	-0.0724	-1.8533		0.0229	0.6204	
Indicator for zero annuity	-0.8718	-1.7882		0.0488	0.1072	
Log (1+ retirement)	0.0244	1.0716		-0.0319	-1.4329	
Indicator for zero retirement	-0.1217	-0.4814		-0.3881	-1.5228	
Log (1+ real estate)	-0.2092	-5.3364	***	0.0901	2.2573	**
Indicator for zero real estate	-2.5806	-5.6841	***	0.8182	1.7391	*
Log (1+ other assets)	0.0376	1.3837		0.0114	0.4211	
Indicator for zero other assets	0.3720	1.1793		-0.3394	-1.0141	

ARC 2009 Yunjie (Winnie) Sun

Welcome! Introduction Data Statistical Models Conclusion The End!

	lerm Insurance (1416)			Whole Insurance (718)		
Parameter	Estimate	t-ratio		Estimate	t-ratio	
Log (1 + debt)	0.0563	2.3066	**	0.0046	0.1822	
Indicator for zero debt	0.1954	0.6560		-0.0019	-0.0059	
Average age of the couple	0.0575	2.2400	**	0.0035	0.1229	
Squared average age of the couple	-0.0006	-2.1053	**	0.0002	0.6699	
Education level of the resondent	0.0577	3.4698	***	-0.0172	-0.9852	
Education level of the spouse	0.0212	1.3865		0.0141	0.8665	
Log (1+ salary of the respondent)	0.0185	2.2804	**	0.0040	0.4896	
Log (1+ salary of the spouse)	0.0140	2.3231	**	0.0148	2.4428	**
Log (1+ sizable inheritance expected)	-0.0234	-0.6409		-0.0107	-0.2944	
Indicator for zero inheritance expected	-0.3234	-0.6867		-0.1723	-0.3676	
Indicator for the desire to leave a bequest	-0.0029	-0.0422		0.1135	1.6806	*
Indicator for foreseeable major financial obligation	0.0748	1.2013		-0.0005	-0.0082	
Rho	-0.2849	-7.6676	***			

Finding

The correlation between the likelihood of term life insurance ownership and whole life insurance ownership is significantly negative after controlling for the covariates.

ARC 2009 Yunjie

(Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

	Term Ins	urance (14 ⁻	Whole Insurance (718)			
Parameter	Estimate	t-ratio		Estimate	<i>t</i> -ratio	
Log (1 + debt)	0.0563	2.3066	**	0.0046	0.1822	
Indicator for zero debt	0.1954	0.6560		-0.0019	-0.0059	
Average age of the couple	0.0575	2.2400	**	0.0035	0.1229	
Squared average age of the couple	-0.0006	-2.1053	**	0.0002	0.6699	
Education level of the resondent	0.0577	3.4698	***	-0.0172	-0.9852	
Education level of the spouse	0.0212	1.3865		0.0141	0.8665	
Log (1+ salary of the respondent)	0.0185	2.2804	**	0.0040	0.4896	
Log (1+ salary of the spouse)	0.0140	2.3231	**	0.0148	2.4428	**
Log (1+ sizable inheritance expected)	-0.0234	-0.6409		-0.0107	-0.2944	
Indicator for zero inheritance expected	-0.3234	-0.6867		-0.1723	-0.3676	
Indicator for the desire to leave a	-0.0029	-0.0422		0.1135	1.6806	*
bequest						
Indicator for foreseeable major	0.0748	1.2013		-0.0005	-0.0082	
financial obligation						
Rho	-0.2849	-7.6676	***			

Finding

The correlation between the likelihood of term life insurance ownership and whole life insurance ownership is significantly negative after controlling for the covariates.

Severity Model

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

$$f(y_i, \theta_i) = \exp(\frac{y_i \theta_i - b(\theta_i)}{\phi_i} + S(y_i, \phi_i))$$

$$E(y_i) = b'(\theta_i), \quad Var(y_i) = \phi_i b''(\theta_i)$$

A link function $g(\cdot)$ links the covariates \mathbf{x}_i to the response mean such that $g(b'(\theta_i)) = \mathbf{x}'_i \boldsymbol{\beta}$.

Severity Model

ARC 2009 Yunjie (Winnie) Sun

- Welcome!
- Introduction
- Data
- Statistical Models
- Conclusior The End!

• Generalized Linear Model (GLM) (see McCullagh and Nelder (1989)) Exponential family

$$f(y_i, \theta_i) = \exp(\frac{y_i \theta_i - b(\theta_i)}{\phi_i} + S(y_i, \phi_i))$$

$$E(y_i) = b'(\theta_i), \quad Var(y_i) = \phi_i b''(\theta_i)$$

A link function $g(\cdot)$ links the covariates \mathbf{x}_i to the response mean such that $g(b'(\theta_i)) = \mathbf{x}'_i \boldsymbol{\beta}$.

• Copulas (see Frees and Wang (2005))

 $C[F_{i1}(y_{i1}), F_{i2}(y_{i2})] = F_i(y_{i1}, y_{i2})$

The log-likelihood of the *i*th household's life insurance demand given they purchase life insurance is

 $l_i = \ln f(y_{i1}, \theta_{i1}) + \ln f(y_{i2}, \theta_{i2}) + \ln c(F_{i1}(y_{i1}), F_{i2}(y_{i2}))$

Severity Model

ARC 2009 Yunjie (Winnie) Sun

- Welcome!
- Introduction
- Data
- Statistical Models
- Conclusior The End!

• Generalized Linear Model (GLM) (see McCullagh and Nelder (1989)) Exponential family

$$f(y_i, \theta_i) = \exp(\frac{y_i \theta_i - b(\theta_i)}{\phi_i} + S(y_i, \phi_i))$$

$$E(y_i) = b'(\theta_i), \quad Var(y_i) = \phi_i b''(\theta_i)$$

A link function $g(\cdot)$ links the covariates \mathbf{x}_i to the response mean such that $g(b'(\theta_i)) = \mathbf{x}'_i \boldsymbol{\beta}$.

• Copulas (see Frees and Wang (2005))

 $C[F_{i1}(y_{i1}), F_{i2}(y_{i2})] = F_i(y_{i1}, y_{i2})$

The log-likelihood of the *i*th household's life insurance demand given they purchase life insurance is

 $l_i = \ln f(y_{i1}, \theta_{i1}) + \ln f(y_{i2}, \theta_{i2}) + \ln c(F_{i1}(y_{i1}), F_{i2}(y_{i2}))$

• Incorporating a parametric distribution function (e.g. a Gamma distribution function with a log link function) and a parametric copula function (e.g. a Gaussian copula) to the above likelihood function, we can get an expression for the log-likelihood of the *i*th observation.

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

	Face Value	of Term Insu	rance	NAR of Whole Insurance		
Parameter	Estimate	t-ratio		Estimate	t-ratio	
Intercept	0.6694	0.9030		0.1299	0.1178	
Financial Vulnerability Index (IMPACT)	0.1046	1.7907	*	0.2533	2.7330	***
Indicator for IMPACT ≥ 4	-0.4636	-1.9698	*	-0.8145	-2.3842	**
Log (1+ cash and cash equivalent)	0.1706	8.5447	***	0.0237	0.8551	
Indicator for zero cash and cash equivalent	1.1962	3.8591	***	-1.1153	-2.0780	**
Log (1+stock)	0.0444	2.2057	**	0.0750	2.5311	**
Indicator for zero stock	0.4152	1.8819	*	1.0006	2.9940	***
Log (1+ bond)	0.0635	3.5879	***	0.0737	3.2795	***
Indicator for zero bond	0.4571	2.8738	**	0.6249	2.7952	***
Log (1+ fund)	0.0302	1.2180		0.0557	1.5422	
Indicator for zero fund	0.3965	1.3562		0.9352	2.1561	**
Log (1+ annuity)	0.0161	0.4580		0.0668	1.1762	
Indicator for zero annuity	0.2572	0.6226		0.6278	0.8866	
Log (1+ retirement)	0.0232	1.0801		0.0914	2.8581	***
Indicator for zero retirement	0.1753	0.7126		0.7532	1.9538	*
Log (1+ real estate)	0.2014	5.7790	***	0.3262	5.4281	***
Indicator for zero real estate	2.1948	5.4352	***	3.5057	4.6320	***
Log (1+ other assets)	0.1736	5.9393	***	0.1963	4.9573	***
Indicator for zero other assets	1.8250	5.2204	***	1.2862	2.3854	**
Log (1 + debt)	0.1289	5.2627	***	0.0400	0.9902	
Indicator for zero debt	1.0537	3.3861	***	0.8675	1.6730	*
Average age of the couple	0.0227	2.6742	***	0.0223	1.8322	*
Squared average age of the couple	-0.0005	-5.6999	***	-0.0006	-5.1411	***
Education level of the resondent	0.0458	2.6043	**	0.0057	0.2035	
Education level of the spouse	0.0237	1.3487		0.0560	2.0745	**
Log (1+ salary of the respondent)	0.0174	1.9938	*	0.0122	0.9756	
Log (1+ salary of the spouse)	-0.0244	-3.9509	***	-0.0280	-2.9078	***
Log (1+ sizable inheritance expected)	0.1634	4.5040	***	0.0406	0.6960	
Indicator for zero inheritance expected	1.9633	4.2608	***	0.5633	0.7446	
Indicator for the desire to leave a bequest	0.2058	3.0970	***	0.6351	5.7582	***
Indicator for foreseeable major financial obligation	0.0871	1.3906		0.1625	1.7100	*
Alpha	0.9131	28.4956	***	0.7460	30.6565	***
Rho	0.0990	1.9636	*			

*** Significant at 1% level

** Significant at 5% level

* Significant at 10% level

2009 Yunjie (Winnie) Sun

Welcome! Introduction Data Statistical Models Conclusion The End!

• The higher the financial vulnerability index, the more life insurance protection a household seeks for.

	Face Value of Term Insurance			NAR of Whole Insurance		
Parameter	Estimate	<i>t</i> -ratio		Estimate	t-ratio	
Intercept	0.6694	0.9030		0.1299	0.1178	
Financial Vulnerability Index	0.1046	1.7907	*	0.2533	2.7330	***

2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

• The higher the financial vulnerability index, the more life insurance protection a household seeks for.

	Face Value	of Term Insura	ince NAR of	Whole Insurance
Parameter	Estimate	t-ratio	Estimate	e <i>t</i> -ratio
Intercept	0.6694	0.9030	0.1299	0.1178
Financial Vulnerability Index	0.1046	1.7907 *	0.2533	2.7330 ***

• The more assets a household has, the more life insurance they demand

Log (1+ cash and cash equivalent)	0.1706	8.5447	***	0.0237	0.8551	
Indicator for zero cash	1.1962	3.8591	***	-1.1153	-2.0780	**
Log (1+stock)	0.0444	2.2057	**	0.0750	2.5311	**
Indicator for zero stock	0.4152	1.8819	*	1.0006	2.9940	***
Log (1+ bond)	0.0635	3.5879	***	0.0737	3.2795	***
Indicator for zero bond	0.4571	2.8738	**	0.6249	2.7952	***
Log (1+ fund)	0.0302	1.2180		0.0557	1.5422	
Indicator for zero fund	0.3965	1.3562		0.9352	2.1561	**
Log (1+ annuity)	0.0161	0.4580		0.0668	1.1762	
Indicator for zero annuity	0.2572	0.6226		0.6278	0.8866	
Log (1+ retirement)	0.0232	1.0801		0.0914	2.8581	***
Indicator for zero retirement	0.1753	0.7126		0.7532	1.9538	*
Log (1+ real estate)	0.2014	5.7790	***	0.3262	5.4281	***
Indicator for zero real estate	2.1948	5.4352	***	3.5057	4.6320	***
Log (1+ other assets)	0.1736	5.9393	***	0.1963	4.9573	***
Indicator for zero other assets	1.8250	5.2204	***	1.2862	2.3854	**

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

	Face Value	Face Value of Term Insurance			NAR of Whole Insurance			
Parameter	Estimate	t-ratio		Estimate	t-ratio			
Log (1 + debt)	0.1289	5.2627	***	0.0400	0.9902			
Indicator for zero debt	1.0537	3.3861	***	0.8675	1.6730			
Average age of the couple	0.0227	2.6742	***	0.0223	1.8322			
Squared average age of the couple	-0.0005	-5.6999	***	-0.0006	-5.1411			
Education level of the resondent	0.0458	2.6043	**	0.0057	0.2035			
Education level of the spouse	0.0237	1.3487		0.0560	2.0745			
Log (1+ salary of the respondent)	0.0174	1.9938	*	0.0122	0.9756			
Log (1+ salary of the spouse)	-0.0244	-3.9509	***	-0.0280	-2.9078			
Log (1+ sizable inheritance expected)	0.1634	4.5040	***	0.0406	0.6960			
Indicator for zero inheritance expected	1.9633	4.2608	***	0.5633	0.7446			
Indicator for the desire to leave a	0.2058	3.0970	***	0.6351	5.7582			
bequest								
Indicator for foreseeable major financial	0.0871	1.3906		0.1625	1.7100			
obligation								
Alpha	0.9131	28.4956	***	0.7460	30.6565			
Rho	0.0990	1.9636	*					

Finding

The correlation between the amount of term and whole life insurance demand is positive and significant.

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End!

	Face Value	e of Term Ins	urance	NAR of Whole Insurance		
Parameter	Estimate	t-ratio		Estimate	t-ratio	
Log (1 + debt)	0.1289	5.2627	***	0.0400	0.9902	
Indicator for zero debt	1.0537	3.3861	***	0.8675	1.6730	
Average age of the couple	0.0227	2.6742	***	0.0223	1.8322	
Squared average age of the couple	-0.0005	-5.6999	***	-0.0006	-5.1411	
Education level of the resondent	0.0458	2.6043	**	0.0057	0.2035	
Education level of the spouse	0.0237	1.3487		0.0560	2.0745	
Log (1+ salary of the respondent)	0.0174	1.9938	*	0.0122	0.9756	
Log (1+ salary of the spouse)	-0.0244	-3.9509	***	-0.0280	-2.9078	
Log (1+ sizable inheritance expected)	0.1634	4.5040	***	0.0406	0.6960	
Indicator for zero inheritance expected	1.9633	4.2608	***	0.5633	0.7446	
Indicator for the desire to leave a	0.2058	3.0970	***	0.6351	5.7582	
bequest						
Indicator for foreseeable major financia	l 0.0871	1.3906		0.1625	1.7100	
obligation						
Alpha	0.9131	28.4956	***	0.7460	30.6565	
Rho	0.0990	1.9636	*			

Finding

The correlation between the amount of term and whole life insurance demand is positive and significant.

Conclusion

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End! We explore a multivariate two part framework for the household's ownership of life insurance.

Contribution

- Improve the understanding of a household's life insurance demand
- Insurance company can develop marketing strategies accordingly
- The demand of term and whole life insurance are substitutes in frequency and complements in severity

Further research

The ultimate goal of this study is to project national life insurance demand. Further research will focus on out-of-sample validation and extrapolation to the national population with the proper survey sampling method. We will also explore the demand of life insurance for single person households.

Conclusion

ARC 2009 Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion The End! We explore a multivariate two part framework for the household's ownership of life insurance.

Contribution

- Improve the understanding of a household's life insurance demand
- Insurance company can develop marketing strategies accordingly
- The demand of term and whole life insurance are substitutes in frequency and complements in severity

Further research

The ultimate goal of this study is to project national life insurance demand. Further research will focus on out-of-sample validation and extrapolation to the national population with the proper survey sampling method. We will also explore the demand of life insurance for single person households.

Thanks

ARC 2009

Yunjie (Winnie) Sun

Welcome!

Introduction

Data

Statistical Models

Conclusion

The End!

