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ABSTRACT 
 
This article addresses the fuzziness in regression models.  The goal is to present a test procedure 
to explicitly examine whether an independent variable has a clear functional relationship with the 
dependent variable in a specific regression model, or whether their relationship is fuzzy.  To this 
end, we interpret the spread of the regression coefficients as a statistic measuring the fuzziness of 
the relationship between the corresponding independent variable and the dependent variable. We 
then derive test distributions based on the null hypothesis that such spreads could have been 
obtained with data generated by a classical regression model with random errors.  The analysis is 
presented in conceptual rather than technical terms. 
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The Fuzziness in Regression Models 
 
1. Introduction 
 
Classical statistical linear regression takes the form 
 

(1) mixxy iikkii ,...,2,1,110 =++++= εβββ
 

where the dependent (response) variable, yi , the independent (explanatory) variables, xij, and the 
coefficients (parameters), βj, are crisp values, and εi  is a crisp random error term with E(εi)=0, 
variance σ2(εi )=σ2, and covariance σ(εi , εj) = 0, ∀i,j, i≠ j. 
 
Although statistical regression has many applications, it is problematic if the data set is too 
small, or there is difficulty verifying that the error is normally distributed, or if there is vagueness 
in the relationship between the independent and dependent variables, or if there is ambiguity 
associated with the event, or if the linearity assumption is inappropriate.   These are the situations 
fuzzy regression was meant to address. 
 
In contrast to the classical statistical linear regression, fuzzy regression takes the general form 
[Tanaka et. al. (1982)]: 

 
nn xAxAAY ~~~~

110 +++= (2) 
 

where Y~ is the fuzzy output, Ãi, i = 0, 1, 2, ..., n, is a fuzzy coefficient, and x = (x1, ..., xn) is an n-
dimensional non-fuzzy input vector.   
 
If the fuzzy coefficients are triangular fuzzy numbers (TFNs), their membership functions (MFs), 
μA(a), can be represented as shown in Figure 1. 
 

 
Figure 1:  Membership Function for Triangular Fuzzy Number 
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As indicated, the salient features of the TFN are its mode, its left and right spreads, and its 
support.  When the two spreads are equal, the TFN is known as a symmetrical TFN (STFN). 
 
In this article, which presents a conceptual version of  the fuzziness test in Berry-Stölzle et al 
(2009), we interpret the spread of the regression coefficients as a statistic measuring the 
fuzziness of the relationship between the dependent variable and the corresponding independent 
variable.  We then derive test distributions based on the null hypothesis that such spreads could 
have been obtained with data generated by a classical regression model with random errors.  
 
The rest of the article discusses the difference between OLS and fuzzy regression, the fuzziness 
of the coefficients, the methodology used to test for fuzziness, and the findings of the analysis.  
We end with comments on the study.  
 
2. Conceptualizing the difference between OLS and fuzzy regression 
 
It is a straightforward matter to conceptualize the essential differences between OLS and fuzzy 
regression.  To this end, we continue an example in Shapiro (2004), portions of which are 
repeated here. 
 
Consider the following simple Ishibuchi (1992) data: 

Table 1: Data Pairs 

i 1 2 3 4 5 6 7 8 
xi 2 4 6 8 10 12 14 16 
yi 14 16 14 18 18 22 18 22 

 
Based on this data, OLS results in the regression line shown in Figure 2. 
 

Figure 2:  Statistical Linear Regression Example 
 
A comparable fuzzy regression line can be developed using the possibilistic regression (PR) of 
Tanaka et al (1982).  Based on possibilistic distributions, the essential idea of PR is to minimize 
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the fuzziness of the model by minimizing the total spread of the fuzzy coefficients, subject to 
including all the given data.  While the PR approach has certain drawbacks, it is sufficient for the 
purpose of this article.1 
 
Thus, starting with the Table 1 data, we fit a straight line through two or more data points in such 
a way that it bounds the data points from above.  Here, these points are determined heuristically 
and OLS is used to compute the parameters of the line labeled YU, which takes the values 13 + 
.75x, as shown in Figure 3(a). 

 
Figure 3:  Fuzzy Regression Example 

 
Similarly, we fit a second straight line through two or more data points in such a way that  
it bounds the data points from below.  As indicated, the fitted line in this case, labeled YL,  takes 
the values  11 + .5x. 
 
For any given data pair, (xi, yi), the foregoing conceptualizations can be summarized by the 
fuzzy regression interval shown in ]Y,[Y U

i
L
i Figure 3(b).2  Assuming, for the purpose of this 

example, that STFN are used for the MFs, the modes of the MFs fall midway between the 
boundary lines, as shown by the curve labeled YM in the figure, that is, M U L

i i iY (Y Y )/= + . 2

                                                

  
Given the parameters, (YU,YL, YM), which characterize the fuzzy regression model, the i-th data 
pair (xi,yi), is associated with the model parameters. 
 
3. Interpreting the fuzziness of the coefficients 
 
The mere finding that the spread of some of the MF of the coefficients are positive does not 
necessarily imply a fuzzy relationship between the dependent and independent variables.  Unlike 
OLS, which includes an error term to capture random deviations, possibilistic regression has no 

 
1 The two main approaches to fuzzy regression are the PR model of Tanaka et al (1982) and the fuzzy least-squares 
regression models of Diamond (1988).  The pros and cons of each are discussed in Diamond and Tanaka (1998) and 
Shapiro (2004). 
2 Adapted from Wang and Tsaur (2000), Figure 1. 
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such term.  As a consequence, the MFs of some of the coefficients would need to have a positive 
spread in order to accommodate that variability.  Thus, in order to establish a fuzzy relationship 
between the dependent and independent variables, one has to show that the spread of the MFs 
exceeds what would be expected simply because of the variability of the OLS error term. 
 
Figure 4 shows a rendition of the situation. 

 
Figure 4:  Probability of exceeding the spread 

 
The top curve represents the MF of a fuzzy coefficient, which is taken to be a STFN.  As 
indicated, the right and left spreads of the MF have length SL and SU, respectively.  The bottom 
curve shows the probability that the spreads of the MF will be exceeded, given data that 
conforms to the assumptions of OLS.  Thus, as indicated, the probability that SL and SU will be 
exceeded is P(Y < YL) and P(Y > YU), respectively. 
 
Notice that the proximity of the OLS curve and the mode of the MF of the FR coefficients will 
determine the relative sizes of the upper and lower probabilities.  If the OLS curve passes 
through roughly the same point as the mode of the MF occupies, the cumulative distribution will 
seems symmetrical with respect to the MF.  In general, however, as represented in the figure, this 
need not be the case. 
 
4. Methodology 
 
The methodology for our simple example proceeds in three steps.  In the first step, we estimate 
the parameters of the OLS regression model using the Table 1 dataset.  This gives us estimates of 
the coefficients and the empirical standard deviation of the OLS residuals.  In the second step, 
we simulate random OLS output values for each of the independent variable data points.  These 
take the form of Ŷ + ε*, where Ŷ denotes the empirical regression line and ε* is the simulated 
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error term.  In the third step, we compute the empirical probability that the simulated OLS values 
fall outside the support of the original MFs of the coefficients, that is, 1- P(YL < Ŷ + ε* < YU). 
 
5. Findings 
 
Based on a simulation of 80,000 trials (10,000 for each xi in Table 1), the probability that a 
random value based on the OLS curve developed from our dataset would fall outside the interval 
[YL, YU] is 27 percent.   Thus, there is a relatively high probability of obtaining the empirical 
spreads, and we cannot reject the hypothesis that the relationship between the dependent and 
independent variable is not fuzzy.  
 
6. Comments 
 
This article discussed a test procedure to explicitly examine whether an independent variable has 
a clear functional relationship with the dependent variable in a specific regression model, or 
whether its relationship is fuzzy.   
 
The dataset considered was simplistic and the emphasis was on conceptual rather than technical 
issues.  Consequently, a number of relevant topics were not addressed, such as non normality and 
heteroscedasticity.  Nor did we address the issue of whether the possibilistic regression model 
provided a better fit to the dataset than the classical regression model with a random error term.  
These issues and a more general methodology for computing the critical probabilities are 
addressed in Berry-Stölzle et al (2009). 
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