
Loss Reserving with Random Selection

Abstract

This paper presents a random selection method with the Monte Carlo simulation

technique in the estimation of loss reserves. The future loss developement fac-

tors are randomly selected from a weighted empirical distribution of observed loss-

development factors. This nonparametric approach provides an estimate of the distri-

bution of total loss reserve. By assigning proper weights, the mean of this distribution

is statistically equivalent to the result from the traditional Chain-Ladder method.

The variance of total loss reserve can also be approximated through this approach.

In general, the proposed method is very �exible and can be easily extended to many

circumstances, including the Bornheutter-Ferguson (BF) method (Bornheutter and

Ferguson, 1972). The results are further enhanced by implementing the simulation

scheme with smoothing techniques.

Keywords: Chain-Ladder method; Random selection; Loss reserving.
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1 Introduction

The task of estimating the amount of current liability associated with the future

contingent loss event is known as loss reserving in the insurance industry. The

insurer is liable on the date of occurrence of claim. Typically, the ultimate value of

claim will not be paid and known until some time later. For practical purposes, it is

very important that an insurance company accrues a reserve for its future payments.

When the level of reserve is inadequate, it could lead to insolvency.

There are many loss reserving methods, some deterministic and some stochastic.

Usually, the actuary will choose several methods for the purpose of determining a

reserve estimate. For a comprehensive review of loss reserving methods, the reader is

referred to Bornheutter and Ferguson (1972), Finger (1976), Taylor (2000), Founda-

tions of Casualty Actuarial Science (2001), Brown and Gottlieb (2001), and England

and Verrall (2002).

Recently, it has become more evident that actuaries also need some measures of

dispersion for a loss reserve estimation. It can be used to develop a con�dence interval

for a prudential margin check. Many researchers have developed di¤erent methods

to describe the standard error of loss reserve. Taylor and Ashe (1983) introduces the

second moment of estimates of outstanding claims. Their data is used in many other

papers including this paper. Hayne (1985) provides an estimate of statistical vari-

ation in development factor methods when a lognormal distribution is assumed for

those factors. Verrall (1991) derives unbiased estimates of total outstanding claims

as well as an estimate of the variance of the estimate of expected total outstand-

ing claim. England and Verrall (1999) provides analytic and bootstrap estimates of

prediction errors in claims reserving. De Alba (2002) presents a Bayesian approach

to obtain point estimates, probability intervals and other summary measures, such
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as variance and quantiles. Han and Gau (2008) provide closed-form solutions for

unbiased estimates of reserves and their corresponding standard errors by assuming

lognormally distributed development factors.

Even with so many sophisticated methods developed over years, the Chain-Ladder

method, a conceptually simple method for investigating the amount of loss reserve, is

still the most commonly used methodology in the insurance industry. However, the

Chain-Ladder method only provides a point estimate of the total reserve and does not

provide any information about the variation inherent in the loss reserving process.

That is, the Chain-Ladder method speaks in absolutes rather than probabilistic

terms.

In order to speak in probabilistic terms, we propose a random selection method

in the loss reserving process. By choosing appropriate weights, the expected to-

tal loss reserve suggested by the proposed random selection method is statistically

equivalent to the expected total loss reserve suggested by the Chain-Ladder method.

In addition, the proposed random selection method is able to use the Monte Carlo

simulation technique for obtaining an estimate of standard error associated with the

estimation of loss reserve.

Many currently existing loss reserve models can be categorized as parametric

models. The choice of parametric model mostly depends on experience gained

through analysis of data. The problem is that the result of a parametric model

might be too rigid, and the rigidity of parametric approach can be overcome by re-

moving the restriction that the model is from a parametric family. The motivation

is to let the data speak for themselves. Nevertheless, nonparametric and parametric

models are not mutually exclusive competitors. A nonparametric approach provides

an alternative for actuaries. When there is no reasonable and adequate parametric

model, a nonparametric model provides us the �rst look at the loss reserve estima-
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tion.

The rest of this article is organized as follows. Section 2 introduces the loss re-

serving process with the Chain-Ladder method. Section 3 presents the loss reserving

process with the proposed random selection method. Section 4 applies the kernel

smoothing technique to obtain an improved con�dence bands for the estimate of loss

reserve. Section 5 applies the proposed method to a dataset used by Taylor and Ashe

(1983) and a dataset used by Wiser (2001). Some remarks are made in section 6.

2 The Chain-Ladder Method

The Chain-Ladder method is the most commonly used methodology in determining

loss reserves. In general, the loss reserve estimation begins with payments actually

made for a certain line of business at successive development years.

Accident Development Year
Year 1 2 3 4 � � � n-3 n-2 n-1 n
1 x11 x12 x13 x14 � � � x1;n�3 x1;n�2 x1;n�1 x1;n
2 x21 x22 x23 x24 � � � x2;n�3 x2;n�2 x2;n�1
3 x31 x32 x33 x34 � � � x3;n�3 x3;n�2
4 x41 x42 x43 x44 � � � x4;n�3
...

...
...

...
... � � �

n-3 xn�3;1 xn�3;2 xn�3;3 xn�3;4 � � �
n-2 xn�2;1 xn�2;2 xn�2;3 � � �
n-1 xn�1;1 xn�1;2 � � �
n xn;1 � � �

Table 1: Incremental Loss Payments by Development Year

Table 1 shows a typical data that the actuary will face in developing the loss

reserve. It represents incremental loss payments by development years. Much of this

data will be incomplete in the sense that the �nal claim cost will not be known, and

a claim cost estimate must be used.
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In addition, let us de�ne i as the index for the accident year and j as the index

for the development year, where i = 1; � � �n and j = 1; � � � ; n. The entry for the

accident year N and the development year 1 shows all dollars paid in the calendar

year N on claims with an accident date in the year N . Similarly, the entry for the

accident year N and the development year j shows the dollars paid in the calendar

year N + j � 1 on claims with an accident date in the year N . Entries that have the

same sum of i and j show the dollars paid in the same calendar year. This happens

when entries are on the diagonal from the top left to the bottom right of Table 1,

with the most recent accident date in the year n.

The second stage of the process is to transform Table 1 into cumulative payments

through development years. This transformation is displayed in Table 2, in which

sij =

jX
t=1

xit for i = 1; � � �n; j = 1; � � �n; and i+ j � n+ 1: (1)

Accident Development Year
Year 1 2 3 4 � � � n-3 n-2 n-1 n
1 s11 s12 s13 s14 � � � s1;n�3 s1;n�2 s1;n�1 s1n
2 s21 s22 s23 s24 � � � s2;n�3 s2;n�2 s2;n�1
3 s31 s32 s33 s34 � � � s3;n�3 s3;n�2
4 s41 s42 s43 s44 � � � s4;n�3
...

...
...

...
... � � �

n-3 sn�3;1 sn�3;2 sn�3;3 sn�3;4 � � �
n-2 sn�2;1 sn�2;2 sn�2;3 � � �
n-1 sn�1;1 sn�1;2 � � �
n sn1 � � �

Table 2: Cumulative Loss Payments through Development Years

From the cumulative payments, we calculate the age-to-age loss-development fac-

tors (sometimes called link ratios) as shown in Table 3. Each entry is the ratio of
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successive development year cumulative payments, that is,

lij =
si;j+1
sij

for i = 1; � � �n� 1; j = 1; � � �n� 1; and i+ j � n: (2)

Accident Ratio of Successive Development Years
Year 1 2 3 4 � � � n-3 n-2 n-1 n
1 l11 l12 l13 l14 � � � l1;n�3 l1;n�2 l1;n�1
2 l21 l22 l23 l24 � � � l2;n�3 l2;n�2
3 l31 l32 l33 l34 � � � l3;n�3
...

...
...

...
... � � �

n-3 ln�3;1 ln�3;2 ln�3;3 � � �
n-2 ln�2;1 ln�2;2 � � �
n-1 ln�1;1 � � �
n

Table 3: Age-to-Age Loss-Development Factors Based on Cumulative Pay-
ments

When there is no further information available, we will assume that all loss-

development factors beyond those given for the oldest accident year are equal to 1.

That is, for the oldest accident year, there is no loss development beyond the last

development year. After having the loss-development factors as seen in Table 3, the

Chain-Ladder method develops the loss reserve via the following four-step process.

1. The single age-to-age column factors are chosen to model the loss development

indicated by existing experience data.

2. The selected patterns of loss development are then projected to create the lower

half of the loss-development triangle, so the model can be used to estimate the

expected ultimate payment for each accident year.

3. The expected ultimate payment less the paid-to-date payment represent the

reserve requirement for each accident year.
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4. Finally, the total reserve (TR) is equal to the sum of reserve requirements for

all accident years.

In order to �nd a single age-to-age loss-development factor for those unknown factors

in each column of Table 3, one can use the arithmetic average, �ve-year average, or

weighted average of known factors in each column. For the weighted average, the

accident years with more losses and more recent data normally are assigned more

weights. The well-known Chain-Ladder method is the result of having accumulated

losses as weights. For illustrative purpose, we use this weighted average to create the

lower half of the loss-development triangle. That is, we have the estimated age-to-age

loss-development factor for the jth column, lj, de�ned as

lj =

n�jX
i=1

wij � lij; (3)

where

wij =
sijPn�j
i=1 sij

; j = 1; 2; :::; n� 1;

and ln is assumed to be 1.

After completing the lower half of loss-development triangle, the expected ulti-

mate payment is calculated for each accident year. This is the expected cumulative

payment at the end of development year n in Table 2. In these calculations, it is as-

sumed that for each accident year all payments are made by the end of development

year n. In order to calculate the expected ultimate payments, we need the amount of

payments by the current date (losses paid-to-date) and the product of projected loss-

development factors for each accident year (ultimate completion factors) as shown

in Table 4.

Here, the paid-to-date payments are values on the diagonal of Table 2 and the
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Accident Year Paid-to-date Completion Factor
1 s1n ln
2 s2;n�1 ln�1 � ln
...

...
...

n� 2 sn�2;3
nQ
j=3

lj

n� 1 sn�1;2
nQ
j=2

lj

n sn1
nQ
j=1

lj

Table 4: Paid-to-date and Completion Factors

completion factor is the product of projected loss-development factors in each row

of Table 3. With this information, the expected ultimate loss is calculated by the

paid-to-date multiplies the cumulative development factor (also known as completion

factor); and the estimated loss reserve for each accident year is equal to the expected

ultimate loss minus the paid-to-date. Then, the total reserve for this block of business

is determined by adding the estimated loss reserves for all accident years.

3 Random Selection

The Chain-Ladder method introduced in section 2 only provides a point estimate of

the total reserve. It does not provide any information about the variation inherent

in the process. What is the probability that the total reserve will exceed 10 million

dollars? We are not able to answer this type of questions based on the results from

this method. But, in practice, the Chain-Ladder method has been proven to be a

valuable methodology. Therefore, we intend to develop a simulation technique that

is as good as the Chain-Ladder method and at the same time allows us to speak in

probabilistic terms rather than absolutes.
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3.1 Selection Scheme

The basic assumption of the Chain-Ladder method is that the past is su¢ ciently

indicative of the future. Thus, it motivates us to use the empirical distribution of loss-

development factors from past accidental years to predict future loss-development

factors. The �rst three stages of the process are exactly the same as the Chain-

Ladder method. That means we will start with the payments actually made for a

certain line of business at progressive development durations as shown in Table 1.

Then, the data will be transformed into cumulative payments through development

years as seen in Table 2. From Table 2, the age-to-age loss-development factors will

be calculated the same way as we did for Table 3.

After having the loss-development factors, the proposed random selection method

develops the loss reserve through the following iterative four-step process.

1. For each development year (i.e., by column) in Table 3, the unknown single

age-to-age loss-development factors are randomly selected with replacement

according to the weights assigned from a sample of known loss-development

factors indicated by the upper half of the loss-development triangle.

2. The selected patterns of loss development are then projected to create the lower

half of the loss-development triangle, so the model can be used to estimate the

expected ultimate payment for each accident year.

3. The expected ultimate payment less the paid-to-date payment represent the

reserve requirement for each accident year.

4. Finally, the total reserve (TR) is equal to the sum of reserve requirements for

all accident years.
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It can be shown that the total reserve obtained from the four-step random selec-

tion process is an unbiased estimator of the total reserve obtained from the Chain-

Ladder method. To avoid confusion, we de�ne Lj as a random variable that is

randomly selected with replacement from the observed loss-development factors in

the development year j. We also assume that L1; L2; :::; :::Ln�1 are independent of

each other. The impact of this assumption will be further discussed in the later

section.

Proposition 1 The expected total loss reserve suggested by the proposed random

selection scheme with weights given by (3) is statistically equivalent to the total loss

reserve suggested by the Chain-Ladder method.

Proof. The unknown single age-to-age loss-development factors are randomly

selected from the observed loss-development factors. For the development year j

(the jth column) in Table 3, Lj is randomly selected, according to weights given by

(3), with replacement from possible values of fl1j; � � � ; ln�j;jg. The unknown entry

lij, n+ 1 � i+ j � n+ j, in Table 3 is estimated by Lj. We have

E[Lj] =

n�jX
i=1

wij � lij (4)

=

n�jX
i=1

"
sijPn�j
i=1 sij

� si;j+1
sij

#

=

Pn�j
i=1 si;j+1Pn�j
i=1 sij

;

for j = 1; 2; :::; n � 1. The equivalency can also be proved in a similar fashion for

other cases by assigning probability accordingly.

The analytical variance can also be derived based on the proposed method. The

ultimate completion factor for each year is de�ned as the product of the projected
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loss-development factors for each accident year (i.e., each row) in Table 3. For

example, for accident year n, the ultimate completion factor is de�ned as

Lult = L1L2 � � �Ln�1Ln; (5)

where Lult is the ultimate completion factor and Ln is assumed to be 1. Since

L1; L2; :::; :::Ln�1 are independent, we have

V ar (L1L2 � � �Ln�1Ln) = E
�
(L1L2 � � �Ln�1Ln)2

�
� [E (L1L2 � � �Ln�1Ln)]2

= E
�
L21
�
� � �E

�
L2n
�
� [E (L1) � � �E (Ln)]2 :

The �rst moments can be found in (4), and the second moments are given by

E
�
L2j
�
=

Xn�j

i=1
wij � l2ij

=
Xn�j

i=1

"
sijPn�j
i=1 sij

�
s2i;j+1
s2ij

#

=

Pn�j
i=1

�
s2i;j+1=sij

�Pn�j
i=1 sij

:

Furthermore, the variance of ultimate payment at the end of development year n can

be found as

V ar (sn1 � L1L2 � � �Ln�1Ln) = s2n1 � V ar (L1L2 � � �Ln�1Ln) ; (6)

where sn1 is the paid-to-date payment for the accident year n. Similarly, we can

derive the variances of ultimate payments at the end of development year n for other

accident years. But, there is no simple formula to determine the variance of total

loss reserve due to the dependency among the ultimate payments.
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Meanwhile, by sampling with replacement, the total number of arrangements for

the lower triangle in Table 3 is
Qn�1
k=1 k!. For example, a 5 by 5 table in Table 3 will

have 34; 560 arrangements, and a 10 by 10 table in Table 3 will have 6:658607� 1027

arrangements. It will be more e¢ cient to implement the proposed method through

the Monte Carlo simulation, in which we treat the original sample of values (the

upper loss-development factor triangle in Table 3) as a stand-in population, reselect

a value with replacement repeatedly, and recompute the reserves for each iteration.

At the end of this random selection scheme, we will have thousands of simulated

loss-development factor matrices. Thus, it enables us to estimate the distributions of

desired quantities for a method that is based on the loss-development factors. One

important application is to use this approach in the BF method. An example of the

BF method will be demonstrated in section 5.2.

In summary, we use a weighted empirical distribution for each development year

to randomly generate future loss-development factors in the lower right half of the

loss-development matrix and compute one total reserve from each simulated matrix.

Each simulation gives possible realizations of future loss-development factors, and

the distribution of desired quantity can be estimated through thousands of such

simulations.

3.2 Distribution of Total Reserve

In this section, we focus on the distribution of total reserve. For each iteration, we will

complete the lower half of loss-development triangle. The expected ultimate payment

is calculated for each accident year. Then, the total reserve for this block of business

is determined by adding the estimated loss reserves for all accident years. When

there are a large number of iterations, we will be able to approximate probabilistic
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characteristics of the loss reserve for each accident year and the total loss reserve.

With each simulated loss-development matrix, we make an estimate of total re-

serve and label this estimate asdTRb. After we have taken B matrices, we approxi-

mate the standard error as vuut 1

B � 1

BX
b=1

�dTRb �dTR�2; (7)

where dTR is the average of B total reserve estimates. The same idea can also be

applied to determine the standard error of loss reserve for each accident year.

Overall, the random selection method is very �exible in terms of inputs. The

actuary can decide the weight allocated to each observed development factor based

on the available information and judgment. This method can be easily implemented

in other loss reserving approaches where a similar development structure is used.

For instance, the completion factors used in the health industry can be simulated

similarly to obtain the distribution of total reserve. However, as promising as this

method sounds, there are several important restrictions that need to be considered.

First of all, the Chain-Ladder method is considered to be somewhat biased in es-

timating the actual total reserve (Stanard, 1985). Using the random selection scheme

with weights de�ned in (3), the resulting distribution of total reserve has a mean that

is equivalent to the total reserve obtained from the Chain-Ladder method. Thus this

proposed method does not provide a correction of the potential bias from the Chain-

Ladder method. The standard error approximated by (7) provides an estimate of

the variation of total reserve from the Chain-Ladder method, not necessarily the

mean square error of the total reserve estimator. Nonetheless, having this type of

information helps greatly in understanding the potential risk related to the business.
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Secondly, the Chain-Ladder method has to be used with caution for early devel-

opment years. The method could provide a very volatile result when the accumulated

losses (paid or incurred) are relatively small comparing with the expected ultimate

losses. In the extreme scenario where the accumulated loss for the �rst development

year is zero, the loss-development factor becomes unde�ned, and the Chain-Ladder

method can not be used. In general, if the early losses are not good approxy to

the expected losses for the period, the Chain-Ladder method may provide a biased

estimation (Halliwell, 2007). For many business lines, such as automobile insur-

ance and homeowner insurance, losses are recognized quickly so that they become

good approximations of expected total losses shortly after. Under these situations,

the random selection scheme works best and is able to provide reliable results. For

other business lines, such as medical malpractice and general liability, losses may not

be recognized years after occurrence, and the early loss-development factors can be

very volatile. An extra ounce of caution is needed under these circumstances, and

alternative methods may be necessary for early development years.

Thirdly, the loss reserving methods through the loss-development triangle almost

always face the fact that the data size is generally small. This is because there are

many internal and environmental factors that can a¤ect the loss reporting system

over the years and the most recent years of data are more indicative of the future

loss development. Even though the size of observed development factors for each

development year is lower than the typical requirement for a reliable result from the

bootstrap method (Chernick, 1999, page 150-151), the proposed method is di¤erent

from the bootstrap method in several ways. The past experience is considered to

be facts and will not be resampled, so the upper half of Table 3 remains unchanged

through the entire process. Then, the future loss-development factors are randomly

selected from the empirical distribution of observed sample. For the development year
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j, we randomly select, with replacement, j future loss-development factors among

n� j observed data points. Each simulated matrix contains randomly selected loss-

development factors in the lower-right triangle. If the number of policy years and

development years are both n, the total number of randomly selected factors is

n(n� 1)=2. For instance, in the case of n = 10, there are 9 data points available for

the selection of 1 future loss-development factor in the 1st development year, 8 data

points for the selection of 2 future loss-development factors in the 2nd development

year, ..., and 1 data points for the selection of 9 future loss-development factors

in the 9th development year. The total number of randomly selected future loss-

development factors is 45. The chance of repeating the same lower-right triangle in

the random selection method is very small.

Moreover, one of the key assumptions in the Chain-Ladder method is that the

pattern of loss-development factors is indicative of the future loss development. Thus,

it is assumed that the observed loss-development factors are somewhat representative

and can be used to predict the future loss development. The actuary needs to

validate the reasonability of this assumption and make adjustments as necessary

before applying the method. When this assumption is seriously violated and cannot

be �xed, alternative loss reserving methods are recommended.

In addition, there are relatively more data points at early development years. As

the losses progress toward the ultimate losses, the size of data points decreases in

algebraic order, while the loss-development factors are in general heading toward 1 in

a much faster fashion. Therefore, for a short tailed or less volatile line of coverages,

the lack of large sample size for later development years is mitigated by the stability

of loss-development factors. Generally, for these business lines, most variation in the

loss reserving comes from the early development years.

Lastly, the resulting distribution using the Monte Carlo simulation is discrete in
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essence and may not be smooth, especially for the later development years. Smooth-

ing techniques can be applied to solve this problem and obtain a better estimation.

Additionally, the Monte Carlo simulation generates future loss-development factors

based on the empirical distribution of observed loss-development factors for each

development year. It is known that the variance of empirical distribution underesti-

mates the actual variance by a factor of n�1
n
, provided n is the number of observed

loss-development factors. Most kernel smoothing techniques can mitigate this e¤ect

and give a more conservative variance estimation.

4 Kernel Smoothing

An inherent drawback of the Monte Carlo simulation in determining the loss reserves,

particularly with those development years close to the development year n, lies in

the discrete nature of the empirical distribution function. In addition, development

factors can be very large in practice. The random selection method proposed in the

previous section limits the selection of loss-development factors for each development

year from the minimum to the maximum of the column data. By doing so, we might

exclude possible large factors with positive probabilities and result in underestimating

the total reserve.

4.1 Smoothed Random Selection

The objective with kernel smoothing is to create a density function that will in some

way approximate the empirical distribution. For the jth development year in Table 3,

we have a sample of loss-development factors, fl1j; l2j � � � ; ln�j;jg. At each point lij,

a density function (kernel) corresponding to that point is created, and this density
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function is denoted as

kij (l) :

For each lij, kij (l) satis�es the requirements of a probability density function. The

kernel smoothed density function estimator is then a �nite mixture (or weighted

average) of these separated density functions. The weight applied to kij (l) is the

assigned probability. In the Chain-Ladder method, the weights are given by wij in

(3). Therefore, the resulting kernel density estimator of the density function for the

jth development year in Table 3 is given by

bfj (l) = n�jX
i=1

wij � kij (l) : (8)

Thus, to obtain an improved estimate, we modi�ed our simulation procedure as

follows.

1. For jth development year in Table 3, the unknown single age-to-age loss-

development factors (i.e., random variable Lj) are randomly selected from the

kernel smoothing estimator of the density function bfj (l), where j = 1; � � � ; n�1.
And, the loss-development factor for development year n is assumed to be 1.

2. The selected patterns of loss development are then projected to create the lower

half of the loss-development triangle, so the model can be used to estimate the

expected ultimate payment for each accident year.

3. The expected ultimate payment less the paid-to-date payment represent the

reserve requirement for each accident year.

4. Finally, the total reserve (TR) is equal to the sum of reserve requirements for

all accident years.
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Notice that step 2 to step 4 are the same steps as described in section 3.1. The

advantage of using the kernel estimation in the �rst step is its �exibility. And, the

�rst step can be achieved by the following two substeps.

1a. Draw a value at random from the weighted empirical distribution of each col-

umn in Table 3.

1b. Draw a value at random from the kernel whose mean is equal to the value

drawn at the step 1a.

However, there are two important issues that need to be addressed. The �rst issue is

how to select the kernel, and the second is the impact of bandwidth selection. These

issues will be addressed in the following sections.

4.2 Selection of Kernel

The choice of kernel and the selection of bandwidth are closely related. The ker-

nel k (�) is only well de�ned up to a scale. For example, the choices of N (0; 1) and

N (0; 2) are identical choices. The optimal kernel in density estimation was discussed

in Hodges and Lehmann (1956) and Epanechnikov (1969). In practice, the Epanech-

nikov kernel is referred as the optimal kernel; nevertheless, the choice of kernel is not

critical. This conclusion is based on the e¢ ciencies of several kernels compared to

the optimal kernel shown in Table 5.

The key message is that the suboptimal kernels lose very little in performance.

And, these results suggest that most unimodal kernel densities perform about the

same as each other. There are three kernels discussed in Klugman et al. (2004),

namely uniform kernel, triangular kernel, and Gamma kernel. We will discuss the

implementation of these three kernels in S-PLUS.
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Kernel E¢ ciency
Epanechnikov 1
Biweight 0.994
Triweight 0.987
Triangular 0.986
Normal 0.951
Uniform 0.930

Table 5: E¢ ciencies of several kernels comapred to the optimal kernel.
(Source: Wand and Jones, 1995)

4.2.1 Uniform Kernel

Let y be the randomly selected data point. The uniform kernel is given by

ky (x) =

0; x < y � b;
1
2b
; y � b � x � y + b

0; x > y + b

; (9)

where b is the bandwidth parameter. The simulated observation is a random selection

from a uniform distribution between y�b and y+b. The determination of bandwidth

will be discussed in the bandwidth selection section.

4.2.2 Triangular Kernel

Let y be the randomly selected data point. The triangular kernel is given by

ky (x) =

x�(y�b)
b2

; y � b � x � y
(y+b)�x

b2
; y � x � y + b

0; Otherwise

; (10)

where b is the bandwidth parameters. The distribution function of the triangular

kernel can be expressed as
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Ky (x) =

0; x < y � b
(x�(y�b))2

2b2
; y � b � x � y

1� ((y+b)�x)2
2b2

; y � x � y + b

1; x > y + b

: (11)

Therefore, one can simulate an observation from the triangular kernel by using the

inverse transformation of the distribution function. This can be achieved by the �rst

9 lines of S-PLUS codes in the appendix A, in which, the input values of y and b are

the selected loss-development factor and the pre-determined bandwidth, respectively.

4.2.3 Gamma Kernel

As mentioned previously, it is possible to have large loss-development factors with

positive probabilities in practice. A Gamma kernel allows us to realize this possibility,

since it is a density function with a long tail. Meanwhile, the Gamma kernel does

not require choosing a bandwidth b. In general, if y is the randomly selected data

point, the Gamma kernel is given by

ky (x) =
1

��� (�)
x��1e�

x
� ; x > 0; (12)

where � is the shape parameter and

� =
y

�
:

Notice that the expected value is equal to ��, and the variance is equal to ��2. That

is � can be determined by the ratio of the variance and the mean. Thus, with the

selected value of y and the pre-determined variance, the simulated observation is
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performed with the built-in function rgamma() in S-PLUS.

4.3 Bandwidth Selection

The practical implementation of the kernel density estimator requires the selection

of the bandwidth b. How best to choose bandwidth parameters is still an ongoing

research. In this article, we intend to have a class of simple and easily computable

formulas which will �nd a bandwidth that is reasonable. If we assume for simplicity

the unknown density to beN(�; �). Then, a quick and simple bandwidth is suggested

by the following rule of thumb (Härdle, 1991).

bb =

�
4b�5
3n

�1=5
(13)

� 1:06b�n�1=5:
A more robust estimate is to use the interquartile range bR, which is de�ned as

bR = the sample 75th percentile� the sample 25th percentile.
The rule of thumb is then modi�ed as

bb = 0:79 bRn�1=5: (14)

A better rule of thumb is the combination of both rules above. That is,

bb = 1:06min(b�; bR
1:34

)n�1=5; (15)

which can be computed by using bandwidth.nrd() S-PLUS function.
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5 Applications

In this section, we present two examples to illustrate how the random selection

method can be applied to �nd loss reserves and the corresponding standard errors.

The �rst example compares results of the proposed method with results of others,

and the data is taken from Taylor and Ashe (1983). The second example applies

the proposed method to the BF method (Bornhuetter and Ferguson, 1972), and

this example uses the data from Wiser (2001, page 257, Chapter 5, Foundations of

Casualty Actuarial Science).

5.1 Random Selection: A Close Look

The data for this example has been used by many researchers. The accumulated

incurred losses are shown in Table 6, and the age-to-age loss-development factors are

displayed in Table 7. Since no further information is available from the data, we

assume that the development to ultimate factor for the last observed development

year is 1 and the accumulated claims are the paid-to-date values.

The reserve estimates are exhibited in Table 8, and the standard errors as a

358 1,125 1,735 2,218 2,746 3,320 3,466 3,606 3,834 3,901
352 1,236 2,170 3,363 3,809 4,130 4,658 4,924 5,349
291 1,292 2,219 3,235 3,986 4,133 4,629 4,909
311 1,419 2,195 3,757 4,030 4,382 4,588
443 1,136 2,128 2,898 3,403 3,873
396 1,333 2,181 2,986 3,692
450 1,297 2,429 3,492
359 1,421 2,864
377 1,363
344

Table 6: Run-O¤Triangle (Accumulated incurred loss, by 1,000)
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3.1432 1.5428 1.2783 1.2377 1.2092 1.0441 1.0404 1.0630 1.0177
3.5106 1.7553 1.5500 1.1325 1.0843 1.1278 1.0571 1.0863
4.4485 1.7167 1.4583 1.2321 1.0369 1.1200 1.0606
4.5680 1.5471 1.7118 1.0725 1.0874 1.0471
2.5642 1.8730 1.3615 1.1742 1.1383
3.3656 1.6357 1.3692 1.2364
2.8843 1.8720 1.4378
3.9533 2.0157
3.6192

Table 7: Age-to-Age Development Factors

percentage of estimated reserves are given in Table 9. The random selection Chain-

Ladder method is based on (3). The results of random selection with equal weights

(i.e., wij = 1
n�j ) is also provided here.

Policy Random Selection Random Selection Uniform Triangu lar Gamma Chain-Ladder Verrall Taylor

Year Chain-Ladder using (3) (w ith equal weight) Kernel Kernel Kernel M ack (1993) (1991) Ashe

2 95 95 95 95 94 95 96 298

3 469 459 460 459 460 470 439 600

4 709 694 693 694 692 710 608 745

5 986 965 963 964 960 985 1,011 1,077

6 1,411 1,430 1,436 1,430 1,433 1,419 1,423 1,788

7 2,182 2,226 2,231 2,243 2,243 2,178 2,150 2,879

8 3,917 3,966 3,957 3,959 3,933 3,920 3,529 4,221

9 4,277 4,309 4,293 4,291 4,277 4,279 4,056 4,866

10 4,608 4,738 4,746 4,738 4,726 4,626 4,340 5,827

Overall 18 ,865 18,881 18,874 18,873 18,818 18,681 17,652 22,301

Table 8: Estimated Reserves, In 1000s

In all cases, 10,000 loss-development factor matrices are simulated. The results

for the �Chain-Ladder Mack�, �Taylor and Ashe�, and �Verrall (1991)�are taken

from Mack (1993). In practice, the Chain-Ladder method is not able to provide

an estimation of standard error. The standard errors for the Chain-Ladder method

shown in Table 9 are approximated by Mack (1993).

The reserve estimates of random selection methods are literally the same as re-
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Policy Random Selection Random Selection Uniform Triangu lar Gamma Chain Ladder Verrall Taylor

Year Chain-Ladder using (3) (w ith equal weight) Kernel Kernel Kernel M ack (1993) (1991) Ashe

2 0.0% 0.0% 26.1% 9.2% 9.3% 80.0% 49.0% 27.0%

3 12.3% 13.7% 14.7% 13.3% 28.9% 26.0% 37.0% 20.0%

4 10.0% 10.4% 11.7% 10.9% 21.4% 19.0% 30.0% 18.0%

5 18.9% 19.3% 22.1% 20.7% 31.6% 27.0% 27.0% 16.0%

6 22.9% 23.2% 25.4% 24.3% 36.0% 29.0% 25.0% 16.0%

7 21.7% 21.6% 23.5% 22.3% 32.4% 26.0% 25.0% 14.0%

8 21.2% 21.3% 23.2% 22.1% 32.4% 22.0% 27.0% 14.0%

9 20.1% 20.4% 21.7% 21.0% 30.2% 23.0% 30.0% 14.0%

10 25.8% 25.3% 27.3% 26.1% 38.0% 29.0% 38.0% 14.0%

Overall 9 .6% 9.6% 10.4% 10.0% 14.5% 13.0% 15.0% 9.0%

Table 9: Standard Error in Percentage of Estimated Reserves

sults from the traditional Chain-Ladder model. And, the proposed random selection

method does perform as we anticipated. It provides us the total reserve that is sta-

tistically equivalent to the total reserve suggested by the traditional Chain-Ladder

method and the variation inherent in the process.

For simplicity, the rest of discussion and comparison will be based on random

selection methods with equal weights. The uniform and triangular kernel smoothing

estimators are based on smoothed random selection methods introduced in section 4

and are based on the bandwidth selector given by (15). A complete S-PLUS program

for the triangular kernel with equal weights is provided in the appendix A.

In addition, the result of using the Gamma kernel is also shown in this example.

Unlike the other two kernels, the Gamma kernel requires a pre-determined variance.

We use the sample variance of all column data in Table 7. This is a very conservative

estimation by assuming each kernel has the same variance as the entire empirical

distribution. Since the Gamma kernel allows the possibility of large loss-development

factors during the selection, a large variation is expected from this process. The

estimated distribution of total reserve is pictured in Figure 1.
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10.8 13.2 15.5 17.9 20.2 22.6 24.9 27.3 29.7 32.0 34.4
Total Reserve

0.00

0.04

0.08

0.12

Figure 1: Estimated Total Reserve Distribution with Gamma Kernel (in
millions)

Because the random selection process provides the distribution of total reserve

through simulations, many interested statistics can be quickly obtained. For in-

stance, the principal-based reserve may require a conditional tail expectation (CTE)

at a certain level that is set by regulators. The reader is referred to Brazauskas et

al. (2008) for further discussions of CTE. The 95% CTE of total reserve can be

approximated by taking the average of the highest 5% of simulated total reserves.

Table 10 lists the calculated 95% CTEs under di¤erent kernel smoothing functions.

Kernel 95% CTE
None 22,907,178
Uniform 23,204,998
Triangular 23,138,165
Gamma 24,931,412

Table 10: 95 percent CTE

Meanwhile, based on the triangular kernel, a sensitivity test on the selection

of bandwidth is conducted to show its impact on the total reserve. The results
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Bandwidth Total Reserve Standard Error Standard Error/ 95 Percentile
Total Reserve Con�dence Interval

b 18,873 1,878 10% (15,412, 22,845)
2b 18,870 2,082 11% (15,037, 23,197)
3b 18,880 2,397 13% (14,492, 23,846)

Table 11: Sensitivity Test on Bandwidth with Triangular Kernel In 1,000s

are presented in Table 11. The bandwidth b in Table 11 is based on (15). As we

expected, the estimation of total reserve remains practically the same in all cases.

The standard error increases when the bandwidth becomes wider. A 95th percentile

con�dence interval is also provided in Table 11.

In addition, during the simulation process, we have implicitly assumed that loss-

development factors for the same accident year are independent to each other. How-

ever, there might be some correlation between loss-development factors in adjacent

development years. To examine the e¤ect of independence assumption, the following

example is studied under a bivariate normal structure with a correlation coe¢ cient

factor.

Suppose the loss-development factor random variable Lj follows a log-normal

distribution with parameters �j and �
2
j . That is log(Lj) s Normal(�j; �2j), and the

estimated �j and �j are given in Table 12 (see Han and Gau, 2008).

j 1 2 3 4 5 6 7 8 9
�j 1:2557 0:5530 0:3694 0:1649 0:1041 0:0807 0:0513 0:0720 0:0176
�j 0:1785 0:0903 0:0888 0:0535 0:0521 0:0362 0:0084 0:0108 0:0084

Table 12: Estimated Parameters

A bivariate normal structure on the log-development factors can be implemented

to check the e¤ect of the removal of the independence assumption. In details, we

assume the joint distribution of log(Lj) and log(Lj+1) is a bivariate normal with cor-
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relation coe¢ cient �. Thus, the conditional distribution of log(Lj+1)j log(Lj) follows

a normal distribution. That is,

log(Lj+1)j log(Lj) s Normal(�j; �2j); (16)

where �j = �j+1 + �
�j
�j+1

(log(Lj)� �j) and �2j = �2j+1(1� �2). For each �xed �, the

random selection process (each with 1000 simulations) is repeated 100 times to obtain

100 estimates of the mean and standard error of the total reserves. The average of

these 100 estimates are summarized in Table 13.

Correlation Coe¢ cient � �0:5 �0:25 0 0:25 0:5
Average Mean Total Reserve 18; 845 19; 059 18; 733 18; 921 19; 115
Average Standard Error 1; 562 1; 580 1; 592 1; 610 1; 610

Table 13: The Impact of Correlation Structure

The addition of correlation structure causes some small variation in the average

of 100 mean total reserve estimates. The average of 100 standard error estimates

increases slightly as the correlation coe¢ cient increases. Overall, the e¤ect of in-

dependence assumption is insigni�cant in this example. This e¤ect could be more

signi�cant if the observed development factors for the most recent accident years lie

in the tail side of the distribution. For instance, a large development factor of the

most recent accident year together with a large positive � could cause the total loss

reserve signi�cantly higher.

5.2 Random Selection and BF Method

The application of random selection method to the BF method is demonstrated in

this example. The loss development data, including expected ultimate losses, is given

in Table 14, and the age-to-age loss-development factors are shown on the run-o¤
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Accident Ages in Months Initial Expected
Year 12 24 36 48 60 72 84 Loss
1994 58,641 74,804 77,323 77,890 80,728 82,280 82,372 81,557
1995 63,732 79,512 83,680 85,366 88,152 87,413 89,654
1996 51,779 68,175 69,802 69,694 70,041 78,237
1997 40,143 67,978 75,144 77,947 79,505
1998 55,665 80,296 87,961 83,738
1999 43,401 57,547 65,934
2000 28,800 45,004

Table 14: Cumulated Incurred Losses

Accident Ages in Months
Year 12-24 24-36 36-48 48-60 60-72 72-84 84-Ult
1994 1.276 1.034 1.007 1.036 1.019 1.001 1.01
1995 1.248 1.052 1.020 1.033 0.992 1.01
1996 1.317 1.024 0.998 1.005 1.01
1997 1.693 1.105 1.037 1.01
1998 1.442 1.095 1.01
1999 1.326 1.01
2000 1.01

Table 15: Age-to-age Loss Development Factors

triangle in Table 15. The loss-development factor from 84 months to ultimate is

assumed to be 1.01 for all accident years.

The Bornhuetter�Ferguson (BF) method (Bornhuetter and Ferguson, 1972) uses

the combination of development factors and expected losses to estimate reserves.

The main advantage of the BF method is that it reduces the impact of unexpected

losses and therefore increases the stability of the reserve estimate. The proposed

method can be applied to estimate the standard errors of BF reserve estimates. For

accident year i = 1994; :::; 2000, suppose the expected loss from other resources is

ELi . Then the estimated reserve for policy year i would be ELi(1� 1=Lulti ), where

Lulti is the cumulative development factor for ith accident year.

The random selection method is applied for 10; 000 simulations. Table 16 records
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Accident Random Selection Chain-Ladder Random Selection BF BF (Wiser, 2001)
Year Mean Stdev Mean Stdev Estimated Reserve
1994 4,972 0 4,955 0 4,964
1995 7,088 0 7,102 0 7,023
1996 4,756 955 4,853 1,032 4,421
1997 18,856 1,535 18,761 1,450 17,906
1998 30,311 2,191 29,744 1,865 29,232
1999 31,157 2,472 31,205 2,235 32,616
2000 32,847 4,694 32,832 2,817 33,475
Total 129,987 5,980 129,454 4,497 129,637

Table 16: Estimated Reserves

the statistics of the simulated distribution of total reserve for each accident year. It

con�rms that the estimate of total reserve for each accident year from the random

selection BF method is very similar to the results obtained from the random selection

Chain-Ladder method and the traditional BF method. The random selection method

provides an extra information on the variation of each estimate. Moreover, the

random selection BF method produces a more stable result as expected.

6 Remarks

The proposed random selection method is a nonparametric method that allows the

data to speak for itself. For any given method that is in the family of loss-development

triangle method, the random selection method produces an estimated distribution of

total reserve. By assigning proper weights, this method can be applied to estimate

the distribution of total reserve for the Chain-Ladder method and the BF method.

This is a great enhancement over these two methods since they only produce point

estimates of the total reserve.

The drawback of the random selection method introduced in section 3 lies in the

discontinuous nature of empirical distribution function. Therefore, it is desirable
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to generate the value of loss-development factor that should be used to model the

tail of loss payment pattern from a smoothed kernel density. Meanwhile, as seen

in examples, the most recent accident years as of the valuation date are critical

since those accident years account for the majority of total claim reserves. For a

more conservative reserve estimation, a kernel density with a longer (or �atter) tail

should be considered. Furthermore, the actuary should recognize issues related to

the choice of kernel and the selection of bandwidth. In practice, we recommend that

the actuary uses a number of combinations between the choice of kernel and the

selection of bandwidth to obtain a range of reasonable estimates. The actuary then

uses his or her experience and judgement to provide an estimate of the loss reserve.

As emphasized in many literature, it is very important to understand the ability

of a model and its limitations. Actuaries often apply multiple methods to make a

more accurate estimation. Practitioners are welcomed to use the proposed random

selection methodology as a sound reference in the reserving process and combine

other knowledge to assess the reserves.
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Appendix A: S-PLUS Codes with Triangular Kernel

triangle <-

function(y, b)

{

u <- runif(1, 0, 1)

x <- sqrt(2 * u * b^2) + (y - b)

if(u >= 0.5)

x <- (y + b) - sqrt(2 * (1 - u) * b^2)

x

}

up.to.date.values

<- c(3901463,5348785,4909315,4588268,3873311,

3691712,3492130,2864498,1363294,344014)

development <- as.matrix(development)

### Bandwidth Selection Using (17)

for (k in 1:9)

{

b[k]<- bandwidth.nrd(development[1:(10-k),k])/4

}

b[9]<-0.5*b[8]

rs.tri<-numeric(9)

rs.tri.development <- matrix(0,10,9)
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product.development.factors.tri <- numeric(10)

product.development.factors.tri[1]<-1

reserves.tri <-matrix(0,10000,10)

total.reserve.tri <-numeric(10000)

for (m in 1:10000)

{

for (i in 1:9)

{

for (k in 1:9)

{

y<- development[ceiling(runif(1,0,length(development[,1])-k)),k]

bb<- b[k]

rs.tri[k]<-triangle(y, bb)

}

### Fill the random sample to the lower triangle ###

rs.tri.development[11-i,i:9]<-rs.tri[i:9]

### Fill in the observed loss-development factors to the upper triangel ###

rs.tri.development[i,1:(10-i)]<-development[i,1:(10-i)]

}

for (j in 2:10)

{

### product of development factors for each accident year ###

product.development.factors.tri[j]<-prod(rs.tri.development[j,9:(11-j)])
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}

predicted.accumulated.claims.tri

<- up.to.date.values*product.development.factors.tri

reserves.tri[m,]<-predicted.accumulated.claims.tri-up.to.date.values

total.reserve.tri[m] <- sum(reserves.tri[m,])

}
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