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Abstract

Nonparametric regression tries to find a relationship between the predictor and the response

without assuming shape of estimated regression function. Its theory and methods are well

developed for the case of completely observed vectors of predictors and responses. In many

applications, including actuarial, some components of the observed vectors may be missed.

Ignoring missing data and using known methods of nonparametric regression may yield in-

consistent estimation. Theoretical results on optimal nonparametric regression with missing

data are presented, and an applied actuarial example is discussed.

1 INTRODUCTION

Consider a classical heteroscedastic regression model

Y = m(X) + σ(X)η (1.1)

where m(x) is the regression function which should be estimated based on a sample

{(X1, Y1), . . . , (Xn, Yn)} of size n from (X, Y ), σ(x) is an unknown positive scale function,

η1, η2, . . . , ηn are independent zero mean and unit variance errors (random variables) which

may have different distributions, X ∈ [0, 1] is the predictor and Y is the response. It is

explicitly assumed that the predictor X and the error η are independent. The quality of
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estimation of a regression function is defined by the mean integrated squared error (MISE).

For this classical setting sharp-minimax theory of nonparametric regression estimation is

well developed, see a discussion in Efromovich (1986,1999,2000) and Efromovich and Pinsker

(1996).

This paper considers a more complicated setting when some pairs of observations may

not be complete — the so-called situation of missing data. Many examples of missing data

and an interesting discussion of the topic can be found in Little and Rubin (2002), Nittner

(2003), Chen et al. (2006), Tsiatis (2006), Liang et al. (2007), Mollenberghs and Kenward

(2007), Wang and Chen (2009), and Efromovich (2011).

In this paper we restrict our attention to two classical missing mechanisms. (i) Responses

are missed at random. Under the missing at random (MAR) mechanism, observations are

triplets {(Xl, δlYl, δl), l = 1, 2, . . . , n} where δl is a Bernoulli random variable with

Pr(δ = 1|X = x, Y = y) = h(x). (1.2)

Function h(x), called the conditional probability of observing the response given the predic-

tor, defines the missing mechanism and in general it is unknown. (ii) Predictors are missed

at random. Under the missing at random (MAR) mechanism, observations are triplets

{(δlXl, Yl, δl), l = 1, 2, . . . , n} where δl is a Bernoulli random variable with Pr(δ = 1|X =

x, Y = y) = h(y).

To understand possible complication that may be caused by missed data, let us consider,

as an example, the former case of missed responses. If anyone would like to deal only with

complete pairs of observations (as a majority of statistical softwares does by default), then it

is important to stress that, if fX,Y (x, y) is the joint density of the predictor and the response,

then the conditional joint density of the complete pair predictor-response is biased because

fX,δY |δ(x, y|1) =
h(x)

∫ 1

0
h(u)p(u)du

fX,Y (x, y). (1.3)

This is what make the problem complicated.
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Let us explain the issue of biased distributions and its connection to missed data via an

example and its discussion. This also will be a good technical introduction to the topic of

missed data.

Biased Distributions. Suppose that we observe a sample Y1, Y2, . . . , Yn from a random

variable Y with the probability density

fY (y) :=
g(y)

∫

g(z)fX(z)dz
fX(y),

where g(y) is a given positive function and neither probability density fY (y) nor the prob-

ability density fX(x) are known. The problem is to estimate the density fX which is the

probability density of interest. Then the sample Y1, . . . , Yn, as well as the corresponding

distribution, is called biased because the density (1.3) of available observations is different

from the density of interest.

Let us present an example which sheds light on the problem of biased data.

Example 1. Suppose that a researcher would like to know the distribution of the ratio

of alcohol in the blood of liquor-intoxicated drivers traveling along a particular highway.

The data are available from routine police reports on arrested drivers charged with driving

under the influence of alcohol. Because a drunker driver has a larger chance of attracting

the attention of the police, it is clear that the data are biased toward higher ratios of alcohol

in the blood. Thus, the researcher should make an appropriate adjustment in a method of

estimation of an underlying density of the ratio of alcohol in the blood of all intoxicated

drivers.

Now let us consider the following question. How is the biased dataset created? It is

created by a missing mechanism. Indeed, there is an underlying set X1, . . . , Xk of ratios of

alcohol in the blood of all k drivers traveling along the highway at the time when police

is present. For the lth driver, let us introduce a Bernoulli random variable δl which is

equal to 1 if the driver is stopped and arrested, and set δl = 0 otherwise. Suppose that

Pr(δ = 1|X = x) = g(x). Then the biased dataset is a subsample of Xs corresponding to
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δ = 1 from the missing dataset

AM := {(δ1X1, δ1), . . . , (δnXn, δn)}.

The following is an interesting exercise that sheds light on involved mathematical formu-

lae.

Exercise 1. Consider a missing dataset AM and construct an empirical cdf based on

complete cases when δ = 1. Does it converge to the underlying cdf of interest FX(x)? To

answer the question, let us write down the empirical cdf based on complete cases,

F̂ (y) =

∑n
l=1 δlI(Xl ≤ y)

∑n
l=1 δl

.

Then we can write,

E{F̂ (y)} = E{E{F̂ (x)|(δ1, . . . , δn)}}

= E
{

∑n
l=1E{δlI(Xl ≤ y)|δl}

∑n
l=1 δl

}

= E
{

E{I(X ≤ y)|δ = 1}

∑n
l=1 δl

∑n
l=1 δl

}

= E{I(X ≤ y)|δ = 1} = FX|δ(y|1)

=

∫ y

−∞

fX|δ(u|1)du.

We conclude that the empirical cdf is unbiased estimate of FX|δ(y|1). Further, by the Law

of Large Numbers,

n−1
n

∑

l=1

δlI(Xl ≤ y)
P
→ E{δI(X ≤ y)}

= E{δFX|δ(y|1)} = P(δ = 1)FX|δ(y|1)

and

n−1
n

∑

l=1

δl
P
→ E{δ} = Pr(δ = 1).

We conclude that F̂ (y)
P
→ FX|δ(y|1).
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A useful remark is due. Note that FX(y) = FX|δ(y|1) iff g(y) is constant. Note that if

the latter is correct then the missing mechanism is called Missing Completely at Random

(MCAR), and then plainly random variables X and δ are independent.

Let us now return to the problem of density estimation based on biased data. We observe

Y N := (Y1, . . . , YN), N =
n

∑

l=1

δl ,

or, using our “missing data” notation, we observe {(δ1X1, δ1), . . . , (δnXn, δn}.

Can we estimate the underlying density fX(x) without knowing h(y) = Pr(δ = 1|X = y)?

Remember that

fY (y) :=
h(y)

∫

h(z)fX(z)dz
fX(y),

and then the obvious answer is ”no.”

However, if we can observe an auxiliary/lurking variable Zl (like speed of a car) and

Pr(δ = 1|X,Z) = h∗(z),

then the answer is ”yes” (in this case the missing mechanism is MAR!).

This ends our discussion of a biased distribution and its relation to missed data.

Now let us present an example of a regression setting that motivated the research.

Example 2. Fairness of using the credit score as an insurance rating variable for college

students is a hot topic in actuarial science. One of the specific tasks is to understand how

the Grade Point Average (GPA) can predict the Credit Score via using a nonparametric

regression. Credit scores can be found on Internet. If asked by a lecturer to report these

two variables, only a proportion of students will do this extra work and return surveys with

GPA and credit score, while others will not even return surveys with their GPA. Question:

Is it desirable/necessary to get GPA’s of the others? In other words, if an underlying data

contains missed responses, is it prudent to develop a nonparametric regression based on its

complete-case subsample? As we shall see shortly, the answer depends on an underlying

setting.
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Finally, let us note that the main remedy for missed data, recommended in the literature,

is imputation of missed values. Free software packages in R, like MICE (Multiple Imputation

via Chained Equations), are available. Let us mention several popular methods of imputa-

tion: (a) Mean imputation (average of observed values); (b) Last observed in longitudinal

studies; (c) Nearest neighbor; (d) Multiple imputation via generating missing observations

based on finding estimates via imputation and then averaging the estimates.

The context of the paper is as follows. Section 2 is devoted to the case of missed responses.

An interesting new case of auxiliary covariates is outlined in Section 3. The case of missed

predictors is discussed in Section 4. Here an applied example is also presented.

2 SHARP MINIMAX REGRESSION WITH MISSED

RESPONSES

The considered nonparametric regression model is (1.1), and the design density p(x) of X is

supported.

A missing at random (MAR) sample is generated by the triplet (δY,X, δ) where δ is

Bernoulli with Pr(δ = 1|X = x, Y ) =: h(x).

A classical Sobolev class of k-fold differentiable regression functions on the unit interval

[0, 1] will be considered,

H(k,Q) := {m(x) : m(x) =
∞

∑

j=0

θjϕj(x),
∞

∑

j=0

[1 + (πj)2k]θ2
j ≤ Q},

where {ϕ0(x) = 1, ϕj(x) = 21/2 cos(πjx), j = 1, 2, . . .} is the cosine basis on [0, 1], k is a

positive integer and 0 < Q <∞.

Assumption 2.1. The nuisance functions p(x), σ(x) and h(x) have bounded first deriva-

tives on [0, 1]. Further, p(x) and h(x) are bounded below from zero on [0, 1].

Assumption 2.2. The regression model is Y = m(X) + σ(X)η where η is standard

normal.
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Set s := ⌊ln ln(n+ 20)⌋, q := ⌊ln(n + 20)⌋, J := ⌊n1/(2k+1)/s⌋.

Define a pivotal Sobolev class

F(m0, k, Q) :=
{

m(x) : m(x) = m0(x) + µ(x), µ(x) :=
∑

j≥J

κjϕj(x),

µ(x) ∈ H(k,Q) ∩ {ψ : sup
x∈[0,1]

|µ(x)| < qn−k/(2k+1)
}

.

Note that if a regression function m(x) belongs to the pivotal class then its “low-

frequency” part is known exactly and the “high-frequency” part is known within the margin

qn−k/(2k+1).

Theorem 2.1 (Lower Bound for MAR Data). Under Assumptions 2.1 and 2.2

inf
m̌

sup
m∈F(m0,k,Q)

E{

∫ 1

0

(m̌(x) −m(x))2dx}

≥ n−2k/(2k+1)Q1/(2k+1)P (k, p, h, σ)(1 + on(1)),

where the infimum is taken over all oracle-estimators m̌ depending on: the SIMAR sample,

the pivot m0(x), the underlying parameters (k,Q) of the Sobolev class F , the design density

p(x), function h(x) = Pr(δ = 1|X = x) describing the missing mechanism, and the scale

function σ(x). Further,

P (k, p, h, σ)

:=
[ k

π(k + 1)

∫ 1

0

σ2(x)

p(x)h(x)
dx

]2k/(2k+1)

(2k + 1)1/(2k+1).

Theorem 2.2 (Upper Bound for MAR Data). Suppose that Assumption 1 holds as

well as Assumption 2 which here can be relaxed to include any zero mean and unit variance

regression error ǫ with the finite eighth moment. Then the estimator m̂(x;SC(N)), based on

the complete-case subsample is sharp minimax and

sup
m∈H(k,Q)

E{

∫ 1

0

(m̂(x;SC(N)) −m(x))2dx}

≤ n−2k/(2k+1)Q1/(2k+1)P (k, p, h, σ)(1 + on(1)).
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There are two important conclusions from the asymptotic theory. The first one is that for

the considered model complete case pairs allow to construct a sharp minimax nonparametric

estimator. In other words, the strategy of standard statistical packages (on how to deal with

missing data by ignoring incomplete pairs) is feasible.

Another important conclusion is that the optimal design density of predictors, minimizing

the asymptotic MISE, is p∗(x) = σ(x)h−1/2(x)I(x ∈ [0, 1])/
∫ 1

0
σ(u)h−1/2(u)du. Here I(·) is

the indicator function. This result is intuitively clear. One should choose more predictors in

areas with larger volatility (scale function) and smaller conditional probability of observing

the response. Formula for p∗ gives us a specific recipe of how to place predictors, and it

may be an underlying idea of an optimal sequential design in a controlled nonparametric

regression. Of course, the optimal design density depends on two nuisance functions, the

scale σ(x) and the conditional probability h(x) of observing the response given the predictor,

which are in general unknown. This is the place where a sequential design may shine. Namely,

one can use a sequential design where the scale function and the conditional probability of

observing the response are sequentially estimated, plugged in the formula for p∗, and then the

obtained design density is used to generate next predictor. This procedure may compensate

for the loss of information due to missed data. More details can be found in Efromovich

(2011a).

3 REGRESSION WITH MISSING RESPONSE AND

AUXILIARY COVARIATES

This is a very interesting setting where an underlying sample is from (Y,X,Z), and we are

interested in estimation of m(x) = E(Y |X = x). Then the vector-covariate Z is called

auxiliary.

The observed sample is from (δY,X,Z, δ) where P (δ = 1|Y,X,Z) = h(X,Z). As a result,

8



the problem would be similar to the above-considered if we had been interested in E(Y |X,Z).

But for our setting

P (δ = 1|Y = y,X = x) =

∫

h(x, z)f(z|x, y)dz,

which may depend on y.

This is a setting where I will present some outlines of the asymptotic theory.

1. The underlying model can be written as

Y = m(X) + [m(X,Z) −m(X)] + σ(X,Z)η

2. It suffices to know the conditional density pZ|X(z|x) and complete cases for sharp

minimax estimation.

3. Sharp minimax constant is proportional to

∫

1

p(x)
∫

I(x, z)h(x, z)p(z|x)dz
dx

4. A naive rate-optimal estimator has a constant of its MISE convergence proportional

to
∫

p(z|x)

p(x)I(x, z)h(x, z)
dxdz.

This is a problem whose solution is in progress. Note that the complex structure of the

constant indicates a rather complicated estimator required for an optimal solution.

4 Minimax Regression with Missed Predictors

This section is devoted to the case where predictors are missing at random. Namely, here in

place of an underlying sample SU(n) = {(X1, Y1, δ1), . . . , (Xn, Yn, δn)} the observed sample

is SMAR(n) = {(δ1X1, Y1, δ1), . . . , (δnXn, Yn, δn)} from (δX, Y, δ) where δ is Bernoulli with

Pr(δ = 1|Y,X) = Pr(δ = 1|Y ) =: hY (y).

The aim is to estimate the regression function m(x) = E{Y |X = x}.
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Assumption 4.1. The underlying joint density of the pair (X, Y ) of the predictor and

response is p(x)f(y|x) which is supported on [0, 1] × Y . Further, f(y|x) = fm(x)(y) where

m(x) := E(Y |X = x) =
∫

Y
yf(y|x)dy is a bounded regression function on [0, 1].

Assumption 4.1 allows us to formulate all necessary restrictions on the conditional density

f(y|x) = fm(x)(y) via its parametric counterpart fθ(y). The following regularity conditions

are similar ones in classical uniform LAN.

Assumption 4.2. Consider a parametric family of probability densities {fθ(y), θ ∈

Θ, y ∈ Y} where Θ is an open interval on the real line. Density fθ is twice-differentiable in

θ for all θ ∈ Θ, and

Ij(θ) :=

∫

Y

(∂jfθ(y)/∂θ
j)2f−1

θ (y)dy, j = 1, 2,

I3(θ) :=
∫

Y
[∂fθ(y)/∂θ]

4[fθ(y)]
−3dy are uniformly bounded for all θ ∈ Θ, and I1(θ) is positive

on Θ.

Theorem 4.1 (Lower Bound for MAR Data). Let Assumptions 2.1, 4.1 and 4.2

hold. Suppose that m0(x) has a bounded derivative on [0, 1] and its range is a subset of Θ.

Then

inf
m̌

sup
m∈F(m0,k,Q)

E{

∫ 1

0

(m̌(x) −m(x))2dx

≥ n−2k/(2k+1)Q1/(2k+1)PMAR(k, d)(1 + on(1)),

where

PMAR(k, d) :=
[ k

π(k + 1)
d
]2k/(2k+1)

(2k + 1)1/(2k+1),

and

d :=

∫ 1

0

[p(x)

∫

Y

[f ′
m0(x)(y)]

2[fm0(x)(y)]
−1hY (y)dy]−1dx.

Now let us present an oracle-estimator whose MISE attains the lower bound. Consider

a complete-case subsample SC(N) := {(X̃l, Ỹl), l = 1, . . . , N}. Set Ĵ := ⌊(N + s)1/(2k+1)⌋,
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and define the oracle-estimator:

m̂(x;SC(N), n, p, hY ) :=

Ĵ
∑

j=0

θ̂j(SC(N), n, p, hY )ϕj(x),

where

θ̂j(SC(N), n, p, hY ) := n−1

N
∑

l=1

Ỹlϕj(X̃l)

p(X̃l)hY (Ỹl)
.

Theorem 4.2 (Upper Bound for Oracle-Estimator). Let {hY : hY (y) = Hh∗(y), suph(y) =

1, H ∈ (0, 1]}. Let h∗(y) and p(x) be bounded below from zero on Y and [0, 1], respectively. Let

f(y|x) and p(x) be bounded on Y×[0, 1] and [0, 1], respectively, and suppose that E(Y 2) <∞.

Then for m ∈ H(k,Q)

E{

∫ 1

0

(m̂(x;SC(N), n, p, hY ) −m(x))2dx

≤ C∗[Hn]−2k/(2k+1)(1 + on(1)),

where a finite C∗ does not depend on the parameter H and on(1) may depend on H.

Let us define an estimator that mimics the oracle. Set J2 := ⌊sn1/3⌋ and introduce

estimates ĥ and p̂ based on the complete-case subsample SC(N) = {(X̃l, Ỹl), l = 1, . . . , N}

and fY (y):

ĥY (y) := min(1/s, h̃Y (y)),

h̃Y (y) := n−1

J2
∑

j=0

N
∑

l=1

ϕj(Ỹl)ϕj(y)/fY (Ỹl),

and

p̂(x) := min(1/s, p̃(x)),

p̃(x) := n−1

J2
∑

j=0

N
∑

l=1

ϕj(X̃l)ϕj(x)/ĥY (Ỹl).

If the marginal density fY of the response is unknown then two natural approaches can be

recommended for its estimation. The first one is to use additional independent observations

Y ′
1 , . . . , Y

′
n′ of the response with n′ being proportional to n, and then set

f̂Y (y) := min(1/s, f̃Y ),
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f̃Y (y) := (1/n′)

(sn′)1/3

∑

j=0

n′

∑

l=1

ϕj(Y
′
l )ϕj(y).

For the actuarial example this approach implies a survey of GPAs in similar classes.

The second approach is to use the underlying MAR sample. This approach is definitely

more appealing if the MAR sample is available.

Theorem 4.3 (Upper Bound for the Plug-In Oracle-Estimator). Suppose that

fY (y), p(x) and h∗Y (y) are bounded below from zero on [0, 1], p(x) and h∗Y (y) have bounded

first derivatives on [0, 1], and first-order partial derivatives of f(y|x) in x and y are bounded

on [0, 1]2. Then for m ∈ H(k,Q)

E{

∫ 1

0

(m̂(x;SC(N), p̂, ĥY ) −m(x))2dx

≤ C∗[Hn]−2k/(2k+1)(1 + on(1)),

where a finite C∗ does not depend on the parameter H and on(1) may depend on H.

Now let us consider application of the proposed methodology for the analysis of a real data

with missing predictors. Fairness of using the credit score as an insurance rating variable is a

hot topic in actuarial science; see an interesting discussion and further references in Brockett

and Golden (2007). Under a grant from the actuarial foundation, the author explored a

specific task of understanding how the credit score, here the explanatory variable X, can

predict the grade point average (GPA), here the response Y . To obtain data, students taking

the same class were asked to get a credit score on Internet and then report it unanimously

together with GPA. The top diagram in Figure 1 exhibits the collected data {(δlXl, Yl), l =

1, 2, . . . , 147} rescaled onto [0, 1]2; here only 92 students provided credit scores. The dashed

line shows the linear regression based on complete pairs; as we know it may be biased if the

missing mechanism is not MCAR. The linear regression supports the well-accepted believe

in the insurance industry that the higher the credit score, the better the grade.

Now, just for a moment, let us look at the bottom diagram which exhibits estimates of

the nuisance functions. The main one is the estimate of the conditional probability h(y) of
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not-missing the credit score shown by the solid line. It indicates the MAR (and not MCAR)

nature of the missing data. The dashed line shows the estimate of the design density – it

is uniform. The dotted line shows the estimate of the scale function multiplied by factor 3.

We see a modest heteroscedasticity which indicates that there is a larger volatility of grades

among students with lower credit scores.

Let us return to the top diagram. The solid line exhibits the proposed data-driven non-

parametric estimator. Similarly to the linear regression, it exhibits a monotonic relationship

between the credit score and the GPA. At the same time, the nonparametric estimate indi-

cates that average GPAs are always smaller than the ones predicted by the linear regression.

This is the reflection of the missing mechanism highlighted in the bottom diagram. Fur-

thermore, both the nonparametric confidence band and the band with Bonferroni correction

indicate that the linear regression, shown by the dashed line, is questionable. Furthermore,

it is easy to see that the nonparametric estimate (the solid line) is not the center of the

bands; instead, as it was explained in Section 3.1, here an undersmoothed estimate was used

as the central line.

More details about the setting can be found in Efromovich (2011b).
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Figure 1: Analysis of a real data with missing predictor. X is the credit score, Y is the GPA, data are shown

by circles, n = 147 and the number of complete pairs is 92. In the top diagram the solid, dashed, dotted

and dashed-dotted lines are the nonparametric estimate, the linear regression based on complete pairs, 95%

confidence band and 95% confidence band with Bonferroni correction, respectively. In the bottom diagram

the solid, dashed and dotted lines are estimates of the conditional probability h(y) of not-missing the predictor

(the credit score), the design density p(x), and the scale σ(x) multiplied by factor 3, respectively.
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