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Motivation

A good multivariate model will:

I identify the level of dependence between insurance
portfolios/blocks.

I provide accurate assessment of the risk exposure of an
insurance portfolio.

I help examine the diversification effect among and within the
portfolios.

I determine required capitals/reserves (regulatory and internal)
using appropriate risk measures.

I be useful in solvency/capital adequacy tests.



Copula Methodology

I The most popular methodology in multivariate modeling in
finance and insurance.

I Extremely easy to understand.

I Another advantage of the copula approach is that it uses a
two stage procedure that separates the dependence structure
of a model distribution from its marginals.



What is a copula?

An k-dimensional copula C (u) with u = (u1, · · · , uk) is a
real-valued function defined on the n-dimensional unit cube Ik ,
where I = [0, 1], that has the following properties:

I C (u) = 0, if at least one of the coordinates is 0;

I C (u) = uk , if all other coordinates are 1;

I For any n-dimensional box [a,b], where a = (a1, · · · , ak) and
b = (b1, · · · , bk), the volume

∆bk
ak
· · ·∆b1

a1
C (u) > 0.

In other words, C (u) is a joint distributional function with uniform
marginals.



Sklar’s Theorem

For any joint distribution function F (x) with marginals
F1(x1), · · · ,Fk(xk), there exists a k-dimensional copula C (u) such
that

F (x) = C (F1(x1), · · · ,Fk(xk)) .



The Use of Copulas

I The two stage procedure: one to estimate the marginals and
the other to choose a copula to determine the dependent
structure, according to Sklar’s Theorem.

I Key is to construct a copula that can capture the dependent
structure of a given dataset.

I Many choices for a two-dimensional copula:
Archimedean copulas: Clayton, Ali-Mikhail-Haq, Gumble,
Frank; Farlie-Gumble-Morgensten; Gaussian; Empirical; ....

I Few higher-dimensional copulas are available.

I An excellent reference:
E.W. Frees and E.A. Valdez (1998). “Understanding
relationships using copulas”, North American Actuarial
Journal, 2(1), 1-25.

I Question: Is the copula methodology always desirable for
modeling dependency?



Some Properties of an Ideal Multivariate Model

Quotes from Joe H. (1997). Multivariate Models and Dependence
Concepts, Chapman and Hall, London:
An ideal multivariate parametric model should have the following
four desirable properties

A. interpretability, which could mean something like mixture,
stochastic or latent variable representation;

B. the closure property under the taking of margins, in particular
the bivariate margins belonging to the same parametric family
(this is especially important if, in statistical modeling, one
thinks first about appropriate univariate margins, then
bivariate and sequentially to higher-order margins);



Some Properties of an Ideal Multivariate Model

C. a flexible and wide range of dependence (with type of
dependence structure depending on applications);

D. a closed-form representation of the cdf and density (a
closed-from cdf is useful if the data are discrete and a
continuous random vector is used), and if not closed-form,
then a cdf and density that are computationally feasible to
work with.



How about a Copula Model?

I Property C is often not satisfied for most copulas. This is
because the dependence structure is predetermined in a
copula. Fitting to data with complicated features such as
multiple modes could be unsatisfactory.

I Property D is not easily satisfied either. In many cases, the
cdf and some other quantities of interest of a multivariate
distribution based on a copula may not be obtained explicitly.
As a result, simulation is often the only tool available.

I Dimensionality is another potential problem. Although this is
not unique to copulas, it seems that copulas make the
problem worse in general. This might be the reason that the
dominating majority of copula applications so far are limited to
bivariate cases. However, in insurance we often need to model
dependence among a large number of correlated business
blocks, which can be difficult to tackle by a copula method.

I Some criticisms can be found in Mikosch, T. (2006).
“Copulas: tales and facts,” Extremes, 9, 3-20.



An Alternative

I Model the dependence directly using a multivariate parametric
model



Proposed Model: Multivariate Erlang Mixture

The density of a k-variate Erlang mixture is of the form:

f (x|θ,α) =
∞∑

m1=1

· · ·
∞∑

mk=1

αm

k∏
j=1

p(xj ;mj , θ),

where

p(x ;m, θ) =
xm−1e−x/θ

θm(m − 1)!
,

x = (x1, · · · , xk), m = (m1, · · · ,mk),
α = (αm;mi = 1, 2, · · · ; i = 1, 2, · · · , k) with each αm ≥ 0 and
∞∑

m1=1
· · ·

∞∑
mk=1

αm = 1.



Could the Erlang Mixture be a good Multivariate Model?

I It is a natural extension of the univariate Erlang mixture but is
it a good model?

I The class of multivariate Erlang mixtures is dense in the space
of positive continuous multivariate distributions.

I In theory we can fit a multivariate Erlang mixture to any
multivariate data within a given accuracy.



Expectation-Maximization (EM) Algorithm

A MLE based algorithm for incomplete data.

I Let x = (x1, x2, · · · , xn) be an incomplete sample generated
from a pair of random variables/vectors (X ,Y ) with joint
density p(x , y |Φ), where Y is an unobservable random
variable and Φ is the set of parameters to be estimated.

I The complete-data log-likelihood is given by

l(Φ|x,Y) =
n∑

i=1

ln p(xi ,Yi |Φ)

I Given the sample x and the current estimate of the
parameters Φ(k−1), the posterior distribution of Yi is given by

q(yi |xi ,Φ(k−1)) =
p(xi , yi |Φ(k−1))

p(xi |Φ(k−1))
,

where p(x |Φ(k−1)) is the marginal density.



Expectation-Maximization (EM) Algorithm

I The expected posterior log-likelihood (E-Step) is given by

Q(Φ|Φ(k−1)) =
n∑

i=1

E{ln p(xi ,Yi |Φ)}

=
n∑

i=1

∫
[ln p(xi , yi |Φ)]q(yi |xi ,Φ(k−1))dyi

I Maximize the log-likelihood (M-Step):

Φ(k) = max
Φ

Q(Φ|Φ(k−1))



An EM Algorithm for Finite Erlang Mixtures

I Data fitting is easy as an EM algorithm is available.

I Data set of k dimensions:
xv = (x1v , x2v , · · · , xkv ), v = 1, · · · , n. We are to use a
k-variate finite Erlang mixture to fit the data.

I Parameters to be estimated (denoted by Φ): the scale
parameter θ and all the mixing weights αm’s, where the shape
parameters m’s are initially preset and denoted by M. If
m /∈M, we set αm = 0.



The EM Algorithm

For m ∈M,

q(m|xv ,Φ(l−1)) =

α
(l−1)
m

k∏
j=1

p(xjv ,mj , θ)

∞∑
r1=1
· · ·

∞∑
rk=1

α
(l−1)
r

k∏
j=1

p(xjv , rj , θ)

α
(l)
m =

1

n

n∑
v=1

q(m|xv ,Φ(l−1)), m ∈M,

and

θ(l) =

n∑
v=1

k∑
j=1

xjv

n
∞∑

m1=1
· · ·

∞∑
mk=1

(
k∑

j=1
mj

)
α

(l)
m



The EM Algorithm: Initial Estimation and Shape
Parameter Adjustment

I Us an “80-8” rule to choose an initial value of θ. After the
value of θ is set, the empirical distribution is used to
determine the value of each αm.

I Run the EM algorithm to initially fit the data and reduce the
number of components in the mixture.

I Adjust the shape parameters by increasing or decreasing their
values and run the EM algorithm repeatedly. Use Schwarz’s
Bayesian Information Criterion (BIC) to further reduce the
number of components in the mixture.



A Preliminary Numerical Experiment
I Fitting data generated from a multivariate log normal

distribution of 12 dimensions.
I Let

Xi =
i∏

j=1

Zj , i = 1, 2, · · · , 12,

where Zj , j = 1, 2, · · · , 12, be iid log normal random variables
with parameters µ and σ.
(X1, · · · ,X12) has a multivariate log normal distribution.

I This example is motivated by the applications in the pricing of
arithmetic Asian options and equity-indexed annuities (EIA).
Consider the price of a risky asset or an equity index that
follows a geometric Brownian motion with drift 12µ and
volatility 12σ over a one-year period. Thus, X1, · · · ,X12

represent the prices of the asset at the end of each month.
I Assume that µ = 2.5% and σ = 10% and simulate 8000

observations from (X1,X2, · · · ,X12).



Parameter values

mi1
mi2

mi3
mi4

mi5
mi6

mi7
mi8

mi9
mi10

mi11
mi12

αm

1 75 70 65 62 59 57 55 54 53 52 52 52 0.03519954
2 77 75 73 72 73 75 78 82 86 91 97 101 0.06750167
3 75 70 66 64 63 63 64 65 68 70 73 75 0.05352882
4 80 79 79 81 83 86 91 98 106 115 122 129 0.06488830
5 80 81 84 89 96 103 109 113 114 114 112 112 0.06019880
6 83 86 90 94 99 105 111 120 129 138 145 150 0.08021910
7 80 79 78 77 75 72 69 66 64 62 61 61 0.06330692
8 79 78 77 77 77 77 77 77 77 78 79 80 0.11508296
9 82 83 84 86 87 89 91 92 94 94 95 97 0.13055435

10 85 88 94 100 109 119 129 143 158 171 182 191 0.03218294
11 89 99 109 116 125 133 139 143 146 149 152 156 0.04549171
12 85 89 92 93 92 90 87 83 79 77 76 76 0.05818215
13 87 92 97 99 100 100 100 102 105 110 116 121 0.06408133
14 87 93 99 103 105 106 105 102 99 96 93 93 0.05392744
15 88 96 104 112 119 122 123 123 122 122 121 122 0.05431533
16 91 103 114 128 141 156 167 178 189 199 209 214 0.02133865

Table: The shape parameters and estimated weights of the fitted distribution with θ = 0.01253039



Fitting Marginals



Aggregated Loss

I The validity of using the marginals to represent the fitness of
the model is questionable as the dependence structure is not
shown in these plots.

I To address the issue, we investigate the fitness of the density
of S12 = X1 + X2 + · · ·+ X12 that is a univariate Erlang
mixture as shown later on.

I Since a poor overall fitting to the multivariate data would in
general result in a poor fitting to the aggregated data, fitting
to the aggregated data could be a good measure for the
goodness of fit. The next 3 slides provide the fitting results in
this regard.



Histogram of Aggregated Data

Figure: Histogram of the aggregated data and the density of the fitted
distribution



Goodness-of-Fit Tests

Test Statistic p-value Accepted at 5% significant level?

Chi Square Test 818.32 0.3099 Yes

K-S Test 0.05 0.27 Yes

AD Test 0.4378 0.2228 Yes



Comparison of Moments

Moment Empirical Distribution Fitted Distribution Fitted/ Empirical Percentage Difference (%)
1 1.1791 1.1791 1.00000 0.0000%
2 1.4566 1.4588 0.9985 0.1511%
3 1.8871 1.8971 0.9947 0.5284%
4 2.5654 2.5985 0.9829 1.2712%
5 3.6605 3.7592 0.9737 2.6237%

Table: The first 5 moments of the empirical and fitted distributions



Distributional Properties
I Let the random vector X = (X1, · · · ,Xk) follow a multivariate

Erlang mixture and N = (N1, · · · ,Nk) be a multivariate
counting random vector with probability function

P(N = m) = αm, mj = 1, 2, · · · ; j = 1, · · · , k.
Then, the characteristic function of X is given by

ϕ(z) = PN

(
1

1− iθz1
, · · · , 1

1− iθzk

)
.

where PN(z) is the probability generating function of N.
I A multivariate Erlang mixture is a multivariate compound

exponential distribution.
I The marginal distribution of Xj is a univariate Erlang mixture.

The weights of the mixture are

α
(j)
mj

def
=
∑

ml ,l 6=j

αm.

Furthermore, any p-variate (p < k) marginal is a p-variate
Erlang mixture.



Distributional Properties

I The marginal random variables X1, · · · ,Xk are mutually
independent if the counting random variables N1, · · · ,Nk are
mutually independent. In this case, we have

αm =
k∏

j=1

α
(j)
mj ,

where {α(j)
mj , mj = 1, 2, · · · , } is the distribution of Nj .

I The sum Sk = X1 + · · ·+ Xk has a univariate Erlang mixture
with the mixing weights being the coefficients of the power
series PN(z , · · · , z): for i = 1, 2, · · · ,

αS
i =

∑
m1+···+mk=i

αm.



Multivariate Excess Losses

Let d = (d1, · · · , dk) be deductible levels (or economic capitals) of
the individual losses X = (X1, · · · ,Xk) from an insurance portfolio.

The associated multivariate excess losses may thus be defined as
the conditional random vector Yd = X− d|X > d.

The joint density of Yd is again a multivariate Erlang mixture with
the same scale parameter. Its mixing weights are given by:

ci =
θk

F (X > d)

∞∑
m1=i1

· · ·
∞∑

mk=ik

αm

k∏
j=1

p(dj ;mj − ij + 1, θ).



Multivariate Excess Losses

I This result allows for explicit calculation of VaR and TVaR of
individual losses simultaneously!

I If Xi is interpreted as the time of default of Firm i and
d1 = · · · = dk = t, then the distribution is the joint
distribution of the default times, given that all firms survive to
time t.



Moment Properties

I The joint moment

E


k∏

j=1

X
nj
j

 = θn
∞∑

m1=1

· · ·
∞∑

mk=1

αm

k∏
j=1

(mj + nj − 1)!

(mj − 1)!
,

where n =
∑k

j=1 nj .

I Covariance Invariance The covariance of any marginal pair
(Xj ,Xl) is proportional to the covariance of (Nj ,Nl). More
precisely,

Cov(Xj ,Xl) = θ2Cov(Nj ,Nl).



Dependence Measure: Kendall’s tau

I Kendall’s tau for a pair of continuous random variables X and
Y measures the tendency that X and Y will move in the
same direction (concordance).
It is defined as

τ = P {(X1 − X2)(Y1 − Y2) > 0}−P {(X1 − X2)(Y1 − Y2) < 0} ,

where (X1,Y1) and (X2,Y2) are two iid copies of (X ,Y ).

I Unlike the (Pearson) correlation coefficient, it does not
assume linear relationship. In this regard, Kendall’s tau is
more meaningful in measuring the correlation between two
random variables.



Dependence Measure: Kendall’s tau

Kendall’s tau of a bivariate Erlang mixture is given by

τ = 4
∞∑

i ,j=0

∞∑
k,l=1

(
i + k − 1

i

)(
j + l − 1

j

)
Qijαkl

2i+j+k+l
− 1,

where Qij =
∞∑

k=i+1

∞∑
l=j+1

αkl is the survival function of the mixing

distribution.



Dependence Measure: Spearman’s rho

I Spearman’s rank correlation coefficient (Spearman’s rho) is
another commonly used measure of association.
It is defined as

ρ = 3(P {(X1 − X2)(Y1 − Y3) > 0}−P {(X1 − X2)(Y1 − Y3) < 0}),

where (X1,Y1), (X2,Y2) and (X3,Y3) are iid copies of (X ,Y ).

I Spearman’s rho of a bivariate Erlang mixture is given by

ρ = 12
∞∑

i ,j=0

∞∑
k,l=1

(
i + k − 1

i

)(
j + l − 1

j

)
Qijα

(1)
k α

(2)
l

2i+j+k+l
− 3



Aggregate Losses

I The sum Sk = X1 + · · ·+ Xk has a univariate Erlang mixture with the
mixing weights being

αS
i =

∑
m1+···+mk=i

αm.

I The value-at-risk at confidence level p,V = VaRp(Sk), is the solution of
equation

e−V/θ
∞∑
i=0

Qi
V i

θi i !
= 1− p, Qi =

∞∑
j=i+1

αS
j .

I The Tail VaR at confidence level p, TVaRp(Sk), is given by

TVaRp(Sk) =
θe−V/θ

1− p

∞∑
i=0

Q∗i
V i

θi i !
+ V , Q∗i =

∞∑
j=i

Qj .

I The stop-loss premium of Sk at deductible level d , E{(Sk − d)+} is given
by

E{(Sk − d)+} = θe−d/θ
∞∑
i=0

Q∗i
d i

θi i !
.



Potential Financial Applications

I Option Pricing: Discrete Lookback, Asian, Basket...

I Default Risk Modeling
Gaussian models are commonly used to model/fit positive
data. Often a highly nonlinear transformation is required if we
do so. Example: modeling the default times of firms using a
Gaussian copula. Instead of mapping the distribution of a
default time to a Gaussian distribution in a non-linearly way,
we may use the multivariate model to fit default time data
directly.



Questions?

The results in this presentation and more and be found in
Lee, S.C.K. and Lin, X.S. (2011). “Modeling dependent risks with
multivariate Erlang mixtures,” ASTIN Bulletin, under revision.

Thank you for listening. Your turn now.....
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