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Abstract 

 
The Analytic Hierarchy Process (AHP) is a theory of measurement through pair-wise 
comparisons that relies on judgment to derive priority scales.  During its implementation, one 
constructs hierarchies, then makes judgments or performs measurements on pairs of elements 
with respect to a criterion to derive preference scales, which are then synthesized throughout the 
structure to select the preferred alternative.   
 
One of the areas where the AHP finds application is in the subjective phases of risk assessment 
(RA).  Depending on the decision-making context, however, problems can arise because 
decision-making often is hindered by data limitations and ambiguities, such as incomplete or 
unreliable data, and vague and subjective information owing to a reliance on human experts and 
their communication of linguistic variables.  Since fuzzy logic (FL) is an effective tool in such 
circumstances, there has been considerable research based on adjusting the AHP for fuzziness 
(FAHP), and recently the focus of some of those studies has been in RA.   
 
The literature discusses more than one FAHP model, which raises the question as to which are 
the prominent models and what are their characteristics.  In response to this question, we 
examine the models underlying three of the most influential FAHP articles, based on Google 
Scholar citations, van Laarhoven and Pedrycz (1983), Buckley (1985) and Chang (1996).  The 
article proceeds as follows.  It begins with a brief overview of the AHP and its limitations when 
confronted with a fuzzy environment.  This is followed with a discussion of FL modifications of 
the AHP.  The article ends with a commentary on the situation. 
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1.  Introduction 
 
The Analytic Hierarchy Process (AHP) [Saaty (1980, 1999,  2008)] is a theory of measurement 
through pair-wise comparisons that relies on judgment to derive priority scales.  During 
implementation of the AHP, one constructs hierarchies, then makes judgments or performs 
measurements on pairs of elements with respect to a criterion to derive preference scales, which 
are then synthesized throughout the structure to select the preferred alternative. 
 
One of the areas1 where the AHP finds application is in the subjective phases of risk assessment 
(RA), where it is used to structure and prioritize diverse risk factors, including the judgments of 
experts.  Depending on the decision-making context, however, problems can arise because the 
decision-making process often is hindered by data limitations and ambiguities, such as 
incomplete or unreliable data, and vague and subjective information owing to a reliance on 
human experts and their communication of linguistic variables.  Since fuzzy logic (FL) has been 
shown to be an effective tool in such circumstances, there has been considerable research aimed 
at modeling the fuzziness in the AHP (FAHP), and recently the focus of some of that modeling 
has been in RA. 
 
The examples of FAHP in RA generally relate to engineering topics.  Zeng et al (2007) and 
Nieto-Morote and Ruz-Vila (2011), for example, presented a FAHP-based RA methodology to 
cope with the multitude of risks associated with complicated construction projects, where FL and 
the AHP were used to deal with subjective judgments and to structure the large number of risks, 
respectively.  In a safety context, Shi et al (2012) use the FAHP to model RA associated with 
falling from height on construction projects, Fera and Macchiaroli (2010) used FAHP to develop 
a new RA model to address  safety management of small and medium enterprises, and An et al 
(2011) used FAHP to develop a RA system for evaluating both qualitative and quantitative risk 
data and information associated with the safety management of railway systems.  Another 
application area was offshore drilling, where Miri Lavasani et al (2011) used FAHP to estimate 
the weights required for grouping non-commensurate risk sources associated with the RA of oil 
and gas offshore wells, and Zhang et al (2012) use FAHP to develop a RA model of relief wells 
to cope with potential accidents during onshore and offshore drilling. 
 
The literature discusses more than one FAHP model, which raises the question as to which are 
the prominent models and what are their characteristics.  In response to this question, we 
examine the models underlying three of the most influential FAHP articles, based on Google 
Scholar citations, van Laarhoven and Pedrycz (1983), Buckley (1985) and Chang (1996).  The 
article proceeds as follows.  It begins with a brief overview of the AHP and its limitations when 
confronted with a fuzzy environment.  This is followed with a discussion of FL modifications of 
the AHP.  The article ends with a commentary on the situation. 
 

                                                 
1 Surveys of other areas of AHP applications can be found in Vargas (1990), Vaidya and Kumar (2006), 
Subramanian and Ramanathan (2012) and Saaty and Vargas (2012). 
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2.  Hierarchical structure and related notation 
 
We start with a discussion of the hierarchical structure since it is key to the study of the AHP.  A 
simple representation of a hierarchical structure is the K × n version depicted Figure 1.2 
 

Figure 1:  A simple hierarchical structure 
 
As indicated, this hierarchy consists of three levels: [Saaty and Vargas (2012, p. 2)] 
 

The goal of the decision at the top level,  
 
The criteria by which the alternatives will be evaluated, in the second level, and  
 
The alternatives, which are located in the third level. 

 
This structure make it possible to evaluate the importance of the elements in a given level with 
respect to elements in a higher level. 
 
The relationships implicit in Figure 1, and the weights associated with its components, are 
captured in the following notation. 
 

Ai = the i-th alternative, i = 1, 2, ..., n 
Ck = the k-th criterion, k = 1, 2, ..., K 
G = the goal 

A|G
iw = the weight associated with Ai, with respect to G 
A|G
ijw = the relative preference of Ai over Aj, with respect to G 

   
A|G
i
A|G
j

w
w

≡ , i, j = 1, 2, ..., n 

C|G
kw = the weight associated with Ck, with respect to G 
C|G
kjw = the relative preference of Ck over Cj, with respect to G 

                                                 
2 Adapted from Buckley (1985b, p. 238, Fig 1). 
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C|G
k
C|G
j

w
w

≡ , k, j = 1, 2, ..., K 

kA|C
iw  = the weight associated with Ai, with respect to Ck 

kA|C
ijw  = the relative preference of Ai over Aj, with respect to Ck 

     
k

k

A|C
i
A|C
j

w
w

≡ , i, j = 1, 2, ..., n; k = 1, 2, ..., K 

 
In some instances, when several decision-makers express their opinion on the relative 
significance of a pair of factors, there may be multiple estimates for the comparison ratios.  
Conversely, there may be situations where there are no estimates for certain ratios (missing data).  
These cases can be accommodated with an array of the form  
 

ij

T
ij ij1 ij2 ijnw (w , w , , w )= , (1) 

 
where nij, in the last subscript, is defined as 
 

nij = 0 is associated with an empty cell,  
nij = 1 indicates a single comparison, and  
nij > 1 indicates a cell where there are multiple comparisons. 

 
Let "^" indicate a perceived3 value, and following Saaty, let "a" and "c" denote the base symbols 
for the perceived weights associated with the alternatives and criteria, respectively. Then 
 

  (2) A|G A|G A|G
ij ij ijˆa w w= ≈

 
k k kA|C A|C A|C

ij ij ijˆa w w= ≈  (3) 
 

  (4) C|G C|G C|G
kj kj kjˆc w w= ≈

 
In what follows, except for emphasis, the superscript on the c will be suppressed, since it is 
redundant. 
 

3.  An overview of the AHP 
 
Given the hierarchical structure of the previous section, this section provides a brief overview of 
the salient features of the AHP relative to that structure. 
 

                                                 
3 The term "perceived" denotes a value that may be based on incomplete or unreliable data and/or vague and 
subjective information.  
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In the AHP, the decision maker carries out pairwise comparison judgments with respect to the 
criteria and alternatives, which are then used to develop overall priorities for ranking the 
alternatives.  The essence of the AHP is based on the following idealized situation.4  
 
As far as assumptions underlying the AHP model, it is assumed that: [Kumar and Maiti (2012, p. 
9947), Adamcsek (2008, p. 7)]] 
 

The decision-making can be modeled in a linear top-to-bottom form as a hierarchy, 
 
The dependencies among elements can only be between the levels of the hierarchy, 
 
The upper level in the hierarchy does not depend on the lower levels, and  
 
The elements of a given level in a hierarchy are independent of each other. 

 
Starting with the comparison judgments related to the criteria, the pairwise relative preference of 
K criteria items is modeled by a K × K preference matrix C, a representation of which is as 
follows: 

 
C|G C|G
12 1K

C|G C|G
C|G 21 2K
kj K K

C|G C|G
K1 K2

1 c c
c 1 c

C c

c c 1

×

⎡ ⎤⋅⋅⋅
⎢ ⎥⋅⋅⋅⎢⎡ ⎤= =⎣ ⎦ ⎢
⎢ ⎥

⋅⋅⋅⎢ ⎥⎣ ⎦

⎥
⎥

1

,      (5)                                                                                    

 
where each cell reflects how many more times, relative to the goal (G), criterion k is 
preferred to criterion j.  To assist in this classification, Saaty (1980, Table 3-1), provided a table 
of relative intensities, which ranged from a minimum of 1, where the activities are "equally 
important", to 5, where "experience and judgement strongly favour one activity over another", to 
a maximum of 9, where the preference of "one activity over another is of the highest possible 
order of affirmation". 

C|G
kjc

 
The construction of this matrix is a two-step process.  First, the cells , j > k, are filled in.  

Then, under the assumption of a consistent preference matrix, that is, 

C|G
kjc
C|G
jk

C|G
kjc c⋅ = (reciprocal ) 

and ∀i, j, k (product-transitive), the cells , j < k, are filled in.  .  C|G C|G C|G
kj ki ijc c c= ⋅ , kC|G

kjc C|G
kkc 1,= ∀

 
Since C is a consistent K × K matrix, its largest eigenvalue is λ = K and there exists a 
corresponding eigenvector C|G C|G C|G C|G T

1 2 Kw (w , w , , w= ) ,

                                                

 with  ∀k, j, yielding 
the relative importance of the weights. 

C|G C|G C|G
kj k jc w / w≈

 

 
4 Adapted from Adamcsek (2008) and Dubois (2011, pp. 18-19). 
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Given the complete preference matrix, either its principal eigenvector  (discussed in §4) or one of 
its approximations (discussed in §5) is used as the vector of priorities. 
 
Then, to verify that the preference matrix is sufficiently consistent, first compute λmax, the 
principal eigenvalue, as:  [Saaty and Vargas (2012, pp. 26-7)] 
 

K C|G C|GK K kj jj 1k
max C|G

k 1 k 1k k

c w(CW)1 1
K w K w

=

= =

λ = =
∑

∑ ∑ . (6) 

 
Given λmax, the consistency index, CI, is computed as 
 

max KCI
K 1

λ −
=

−
. (7) 

 
The final stage is to calculate a Consistency Ratio (CR) to measure how consistent the judgments 
have been relative to large samples of purely random judgments.  Specifically, the consistency 
ratio (CR) of the preference matrix is computed as 
 

CICR
RI

= , (8) 

 
where the random index, RI, is a simulated random pairwise comparisons for different size 
matrices, and is given in the following table.  
 

n 1 2 3 4 5 6 7 8 9 10 
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.46 1.49 

Source: Saaty (1980)        
 
According to Saaty, a CR < 10% implies consistency, while if it is not less than 10% the 
judgments need to be revised.5 
 
Similarly, the preference matrixes for the alternatives, relative to each of the criterion, 

 k=1, 2, ..., K, are constructed and checked for consistency. kA|C
ij n n

A a
×

⎡ ⎤= ⎣ ⎦ ,

                                                

 
Given these two local values, the criteria preferences with respect to the goal, and the 
alternatives preferences with respect to the criteria, the global result, the alternatives preferences 
with respect to the goal, comes from their aggregation: 
 

 
5 Saaty counsel that “… improving the consistency of a judgment matrix does not necessarily improve the validity of 
the outcome. Validity is the goal in decision-making, not consistency, which can be successively improved by 
manipulating the judgments as the answer gets farther and farther from reality.” [Saaty and Tran (2007)] 
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1 2 K

1 2 K

1 2 K

A|C A|C A|C C|G A|G
1 11 1 1

A|C A|C A|C C|G A|G
2 22 1 2

A|C A|C A|C C|G A|G
K nn n n

w ww w w
w ww w w

w ww w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. (9) 

 

4.  The Eigenvector method for determining the weights6 
 
Let  

i
ij n n

j n n

wW [w ]
w×

×

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
 (10) 

 
be an n × n consistent pairwise comparison matrix, where w1, w2, ..., wn are weights and 

.  Then n
ii 1

w
=

=∑ 1 ij
ji

1w
w

= and i i k
ij ik kj

j k j

w w ww w w
w w w

= = = ∀i, j, k.  

 
If W is known, but w = (w1, w2, ..., wn)T, the vector of weights, is not, the latter can be recovered 
using the eigenvalue method.  
 
We begin by taking the matrix product of the matrix W with the vector w to obtain: 
 

1 1

1 12 n

2 22 2

1 n 3 3

n n n n

1 2

w w1
w nww w
w nww w1

w wW w n ww nw

w w w nw1
w w

⎡ ⎤⋅⋅⋅⎢ ⎥ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⋅⋅⋅⎢ ⎥ ⎜ ⎟ ⎜ ⎟= =⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⋅⋅⋅

⎢ ⎥⎣ ⎦

=  (11) 

 
This is an eigenvalue problem of the form Ww = λw, where λ is an eigenvalue, which can be 
solved for w.7 
 
In this instance, since each row of W is a constant multiple of its first row, its rank is one and all 
its eigenvalues, save one, are equal to zero.  Moreover, since the sum of the eigenvalues of a 
positive (wij > 0, ∀ i,j) matrix is equal to its trace (the sum of its diagonal elements), the non zero 
eigenvalue has a value of n, the order of the matrix.  Since Ww = nw , w is said to be the 
eigenvector of W corresponding to the maximum eigenvalue n.  [Adamcsek (2008: 14)] 
 
                                                 
6 Adapted from Saaty (1980, pp. 49-51, §7-5, pp. 258-9) and Adamcsek (2008, Chapter 3). 
7 Essentially [Saaty (1980, pp. 258-9)], this reduces to the problem of finding the λ's that are the roots of |W - λ I|.  
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In practice, in contrast to W=[wij], where wij = wikwkj, the preference matrices, C and A, 
generally do not have this product-transitive characteristic, since the judgment of experts have 
some degree of inconsistency.  In the case of the criteria, for example, wij is estimated by cij, and 
the eigenvalue problem for the inconsistent case is: 
 

Aw = λmax w,  (12) 
 
where λmax will be close to n (actually greater than or equal to n [Saaty (1980, p. 181)]) and the 
other eigenvalues will be close to zero. The estimates of the weights can be found by 
normalizing the eigenvector corresponding to the largest eigenvalue in the above matrix 
equation. 
 

5.  Alternate vectors of priorities 
 
In the previous section, vectors of priorities were constructed from the pair-wise comparison 
matrix by first computing the principal eigenvector, and then normalizing it.  For those instances 
when this approach is not feasible, Saaty (1980) suggested various approximations that can be 
used. [Saaty (1980: 19-21, 231-3)]  Given C|G

ijC c ,⎡ ⎤= ⎣ ⎦ three of those methods that are used in 
subsequent discussions are:  
 
(1) Normalized arithmetic mean.  Sum the elements in each row and normalize by dividing each 

sum by the total of all the sums, so that the results add up to unity: 
 

K
ijj 1

i K K
iji 1 j 1

c
w

c
=

= =

=
∑

∑ ∑
,   i = 1, 2, ..., K (13) 

 
The first entry of the resulting vector is the priority of the first activity, the second of the 
second activity, and so on.  

 
(2) Normalized geometric mean.  Multiply the n elements in each row and take the nth root. 

Normalize the resulting numbers.  Thus, 
 

( )
( )

1/KK
ijj 1

i 1/KKK
iji 1 j 1

c
w

c

=

= =

=
∏

∑ ∏
,   i = 1, 2, ..., K (14) 

 
 
(3) Logarithmic least squares model.  The vector of priority is estimated by the normalized 

vector that minimizes: 
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2
C|GK K
i

ij C|G
i 1 j 1 j

j i

wln c ln
w= =

≠

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ , (15) 

 
which turns out to be the same as the normalized geometric mean. 
 

6.  Perceived limitations of the AHP 
 
Although there have been discussion regarding the broader issue of the validity of the AHP as a 
methodology,8 we limit our focus here to the concerns of authors who advocate the use of fuzzy 
data sets as input to the AHP.  The concerns include the following issues: 
 

It gives decision makers the opportunity to express their - essentially fuzzy - opinions in 
fuzzy numbers. [van Laarhoven and Pedrycz (1983)] 
 
Decision makers prefer natural language expression [Lee et al. (2013, p. 349)] 
 
It is more reliable to consider interval judgments than fixed-value judgments [Jia et al. 
(2013)] 
 
Crisp values are not capable of reflecting a person’s vague thoughts  [Kutlu and Ekmekçioğlu 
(2012, p. 62)] 
 
Asking for precise pairwise comparison is debatable, because these are arguably imprecisely 
known. [Dubois (2011, p. 19)]  
 

7.  Fuzzy AHP (FAHP) models 
 
Given the foregoing as background, we turn now to a description of the models underlying three 
of the most influential FAHP articles, based on Google Scholar citations, van Laarhoven and 
Pedrycz (1983), Buckley (1985) and Chang (1996).9  The articles are discussed in chronological 
order. 
 
 
 

                                                 
8 For example, Dubois (2011, p. 19) observed that, in practice, pairwise comparison data do not provide consistent 
matrices, and Bouyssou et al (2000, §6.3.2) expressed concern about such things as measurement issues and an 
absolute scale with no degrees of freedom. 
9 Although, as mentioned earlier, there have been surveys of the AHP articles, only a small portion of those studies 
were devoted to FAHP.  While not a survey, per se, the bibliography of Dubois et al (2000) cites a number of FAHP 
articles. 
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7.1  The van Laarhoven and Pedrycz (1983) FAHP model 

van Laarhoven and Pedrycz (1983) were the first to develop a FAHP.  The main features of their 
approach were the following: 
 

Triangular fuzzy numbers (TFNs) were used to extend the AHP to FAHP 
Multiple decision-makers were accommodated 
Logarithmic least squares were used to derive 
      Fuzzy weights and  
      Fuzzy performance scores 
Approximate fuzzy multiplication was used 

 
Following Saaty (1980, p. 231), as extended by Lootsma (1981), van Laarhoven and Pedrycz 
(1983) modeled their fuzzy version of the AHP using triangular membership functions and 
logarithmic regression.10  The general structure of their comparison matrix for the criteria took 
the following form11: 
 

( )
12 1K

21 2K
ij K K

K1 K2

(1,1,1) c c
c (1,1,1) c

C c

c c (1,1,1)

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,  (16) 

where ( )ij

T

ij ij1 ijnc c , ,c= , and 1
ijt ijt ijt ijt jit

jit jit jit

1 1 1c (l , m , u ) c , ,
u m l

−
⎛ ⎞

= = = ⎜⎜
⎝ ⎠

⎟⎟ i, j = 1, 2, ..., K, i ≠ j,   

t = 0, ..., nij.  nij = 0 is associated with an empty cell, and nij > 1 indicates a cell where there are 
multiple comparisons, which occurs when several decision-makers express their opinion on the 
relative significance of a pair of factors. 
 
It follows that for the fuzzy weight vector, w, the fuzzy logarithmic least squares model to be 
minimized is [Boender et al (1989, p. 135), Wang et al (2006, p. 3057)] 
 

( )

ij

ij

2
n C|GK K

i
ijt C|G

i 1 j 1 t 1 j
j i

nK K
L L U 2 M M M 2 U U L
ijt i j ijt i j ijt i j

i 1 j 1 t 1
j i

wJ ln c ln (17)
w

(ln c ln w ln w ) (ln c ln w ln w ) (ln c ln w ln w )

= = =
≠

= = =
≠

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= − + + − + + − +

∑∑∑

∑∑∑ 2

                                                

 

where L and U denote the lower and upper extremes of a TFN and M denotes the mode. 

 
10 Lootsma (1981) had shown that logarithmic regression can accommodate the case of multiple estimates for the 
comparison ratios and situations where there were no estimates for certain ratios (missing data).  [Buckley (1985, p. 
242)]   
11 Adapted from Wang et al (2006, p. 3056) 
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Setting  van Laarhoven and Pedrycz  gave the normalized 
result as: 

L M
i i i i il ln w , m ln w ,u ln w= = = U

i ,

 

i i
K K K

i ii 1 i 1 i 1

exp(l ) exp(m ) exp(u ), ,
exp(u ) exp(m ) exp(l )

= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠∑ ∑ ∑

i

i

, i=1, ..., K,  (18) 

 
which they used an estimate for wi. 
 
They then use their modified TFN multiplication to aggregate the local weights in order to 
approximate the global TFN weights for the alternatives. 
 

7.1.1 Limitations of the Van Laarhoven and Pedrycz study 

 
The limitations of the Van Laarhoven and Pedrycz study include: 
 
• The formula they used for multiplication 
 

(l1, m1, u1) ⊗ (l2, m2, u2) ~ (l1 l2, m1 m2, u1 u2), (19) 
 

which results in a triangular fuzzy number, is only an approximation. 
 
• A change in the priorities may cause rank reversal when replicating existing judgments on a 

single comparison. [Zhu (2012)] 
 
• The methodology used to normalize the local fuzzy weights was problematic [Wang et al 

(2006)] 
 
• Uncertainty of local fuzzy weights for incomplete fuzzy comparison matrices [Wang et al 

(2006)] 
 

7.2  The Buckley (1985) FAHP model 

The main features of Buckley (1985b) were the following: 
 

Trapezoidal FNs were used to extend the AHP to FAHP 
The geometric mean method was used to derive  
     Fuzzy weights and 
     Performance scores 
Fuzzy multiplication and the fuzzy K-th root was used, based on 

α-cuts and interval arithmetic 
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Buckley's method was to substitute the fuzzy ratios into the solution of the normal 
equations.  He chose the geometric mean procedure because it resulted from the log least squares 
method, and he wanted a method that extends easily to fuzzy positive reciprocal matrices.   

ij ija and c

,

⊗

ij ⎥

ij

j

 
For , the geometric mean procedure takes the form:  [Buckley (1985b, p. 237)] C|G

ijC [c ]=
 

1/K
i i1 iKr (c c )= ⊗ ⊗ , i = 1, ..., K  (20) 

 
and 
 

1
i i 1 Kw r (r r )−= ⊗ ⊕ ⊕  i = 1, ..., K  (21) 

 
where represent fuzzy addition and multiplication, respectively.  and⊕
 
Based on Buckley (1985a) and assuming the trapezoidal fuzzy number, , the 

increasing and decreasing portion of the MF for was developed as: [Buckley (1985b, p. 
237)]   

ij ij ij ij ijc ( , , , )= α β γ δ
C|G
iw

 
1/K

K

i ij ij
j 1

f (y) (( )y )
=

⎡ ⎤
= β − α + α⎢

⎣ ⎦
∏ , i = 1, ..., K  (22) 

    

1/K
K

i ij ij
j 1

g (y) (( )y )
=

⎡ ⎤
= γ − δ + δ⎢ ⎥

⎣ ⎦
∏   , i = 1, ..., K (23) 

  

for 0 ≤ y ≤ 1, respectively.   
 

Then, he defined and 
1/KK

i ij 1=
⎡ ⎤α = α⎣ ⎦∏ K

ii 1
.

=
α = α∑   

Similarly, he defined βi and β, γi and γ, δi and δ . 
 
Finally, let  
 

K
ii 1

f (y) f (y),
=

= ∑     (24) K
ii 1

g(y) g (y).
=

= ∑
 
Then, the fuzzy weights are determined by C|G

iw
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i i i i, , ,⎛ ⎞α β γ δ
⎜ ⎟δ γ β α⎝ ⎠

, 

 
where the graph of the MF for is  C|G

iw
 

zero to the left of αi δ−1,  
 
x = fi(y)/g(y) on the interval [αi δ−1, βi γ−1],  
 
a horizontal line from (βi γ−1, 1) to (γi β−1, 1),  
 
x = gi(y)/f(y) on the interval [ γi β−1, δi α−1], and  
 
zero to the right of δi α−1.  
 

If necessary, can then be multiplied by a normalizing constant so that its support lies in the 
interval [0, 1]. 

C|G
iw

 
Similarly, the weights, and , k = 1, ..., K, can be developed for the alternatives. kA|C

ijw kA|C
iw

 
Then, the final fuzzy weights for the alternatives, relative to the goal, is: 

1A|C A|CA|G C|G C|G
i i 1 i Kw (w w ) (w w= ⊗ ⊕ ⊕ ⊗K ) . (25) 

These values can now be normalized. 
 
Buckley (1985b, p. 240-1) extends this analysis to the case involving multiple experts. 
 

7.2.1 Limitations of the Buckley study 

If the positive, reciprocal matrix is perfectly consistent, then the geometric row mean procedure 
gives the same weights as the eigenvector method, which was Saaty’s original method. However, 
if there is not perfect consistency, the geometric row procedure can give different weights 
compared to the eigenvector method. [Csutora and Buckley (2001)] 
 

7.3  The Chang (1996) FAHP model 

The main features of Chang (1996) approach were the following: 
 

TFNs were used to extend the AHP to FAHP 
Arithmetic means were used to determine the priority vector  
The final ranking was done using crisp numbers 
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Chang (1996) used the arithmetic mean algorithm to find fuzzy priorities for the comparison 
matrices, whose elements were represented by triangular fuzzy numbers. 
 
Given the criteria comparison matrix, whose elements were TFNs, he applied the fuzzy 
counterpart of the arithmetic means, which he interpreted to be: 

ijc ,

 
1

K K K

i ij kj
j 1 k 1 j 1

S c c
−

= = =

⎡ ⎤
= ⊗ ⎢ ⎥

⎣ ⎦
∑ ∑∑  (26) 

 
and which he called the fuzzy synthetic extent with respect to the i-th object.12  
 
He went on to interpret this value as  

K K K
ij ij ijj 1 j 1 j 1

i K K K K K K
kj kj kjk 1 j 1 k 1 j 1 k 1 j 1

i i i

l m
S , ,

u m

(l , m , u ) i 1, , K.

= = =

= = = = = =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

= =

∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

u

l   (27) 

 
The normalized row sums (i = 1, ..., K) are then compared using the degree of possibility 
values:  [Calabrese et al (2013, p. 3749)] 

iS

 

i j

i i j j

i j
u l

i j j i(u m ) (m l )

1 if m m
V(S S ) if l u i, j 1, , K, j i

otherwise0

−
− − −

⎧ ≥
⎪

≥ = ≤ = ≠⎨
⎪
⎩

 (28) 

 
and the relative crisp weight of each item i is calculated by normalizing the degree of possibility 
values: 
 

i j
i K

k jk 1

V(S S | j 1, 2,...,K, j i)
w ,i 1,2,...,K

V(S S | j 1, 2,...,K, j k)
=

≥ = ≠
= =

≥ = ≠∑
 (29) 

 
where 
 

i j i jj (1, ,K) j i
V(S S | j 1, 2,..., K, j i) min V(S S ) i 1, 2,..., K

∈ ≠
≥ = ≠ = ≥ =  (30) 

The foregoing formula is used to compute the local crisp weights for the criteria and alternatives, 
and then the standard aggregation formula for the classical AHP is used to compute the global 
weights for the alternatives. 

                                                 
12 The term "extent analysis" refers to an analysis of the extent to which an object satisfies a goal. 
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7.3.1 Limitations of the Chang study 

The limitations of the Chang (1996) study include: 
 
• The normalization formula does not take into account constraints derived from the AHP 

method [Enea and Piazza (2004)] 
 
• The method could lead to a wrong decision, because it may assign zero weights to some 

items (criteria, sub-criteria or alternatives), excluding them from the decision analysis.  
[Wang et al. (2008)] 

8.  Comment 
 
The purpose of this article has been to present some preliminary observations regarding FL 
modifications of the AHP. To this end, we presented an overview of a hierarchical structure, the 
salient features of the AHP, the eigenvector method for determining the weights, alternate 
vectors of priorities, the perceived limitations of the AHP, and the dominant features of the three 
most commonly use FAHP models.  In so far as the latter, a number of limitations of these 
models were mentioned; these will be addressed in a subsequent article.  In addition, since this 
study is a part of a larger study that deals with FL applications in RA, examples of FAHP 
applications in RA were mentioned.  Of course, the inquiry was far from exhaustive.  
Nonetheless, to the extent this article provides some background and an impetus for further 
study, it will have served its purpose. 
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