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Abstract 
 
This article provides an overview of three diverse fuzzy logic methodologies that can be 
employed to compute the value-at-risk of a portfolio, given a linguistic perspective. The 
methodologies are: fuzzy histograms, credibility measures, and a fuzzy Chebyshev inequality.  
Some preliminary observations about how they can be implemented are also provided. The 
article concludes with a comment on the material covered and suggestions for further studies. 
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1. Introduction 
 
The value-at-risk (VaR), at a confidence level α ∈ (0, 1) and a fixed horizon, is given by the 
smallest number such that the probability that a loss exceeds that number is no larger than (1 − 
α).  When the distribution of losses is known (or can be assumed) and adequate relevant data is 
available, estimates of the core parameters can be procured, and the VaR can be computed.  
However, often there is distributional ambiguity, in the sense that there is uncertainty regarding 
underlying distributions, and, frequently, this uncertainty is associated with parameters that are 
described in linguistic form owing to vagueness in the historical data and/or imprecision in the 
opinions of experts.  Fuzzy logic (FL) methodologies can be employed to help resolve such 
situations.   
 
This article provides an overview of some of these FL methodologies and some preliminary 
observations about how they can be implemented to compute the VaR, given a linguistic 
perspective.  In particular, we present a synopsis of three diverse FL methodologies that can be 
employed to establish the VaR: fuzzy histograms, credibility measures, and a fuzzy Chebyshev 
inequality.  Following this, the article concludes with a comment on the material covered and 
suggestions for further studies. 
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2. Estimating the VaR using a histogram 
 
This section discusses the use of histograms to estimate a pdf, with which a VaR can be 
computed. First a crisp histogram model is presented.  This is followed by a discussion of a 
fuzzy histogram model.  The section ends with a comparison of a fuzzy histogram-based VaR 
with a GARCH-based VaR, using the VaR model validation of Kupiec (1995). 
 
2.1 Estimating a pdf using crisp histograms1 
 
Let 
 

X be a sample space 
Ck , k = 1, …, K, be disjoint classes of X 

 
Then, using crisp histograms, a pdf can be estimated as: 
 

k
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P (C ) if x C
cf (x)
0 if x C
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where: 
 

P(Ck) is estimated using the relative frequency of samples xj ∈ Ck and 
ck is the scaling scalar, and equals the size of class Ck (which in the one-dimensional case, 
equals the length of the interval Ck ) 

 
The pdf f(x) is approximated by a summation of the fk(x) functions:  
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Figure 1 shows a representation between a pdf and its associated crisp histogram2 based on the 
foregoing methodology. 
 

                                                 
1 This section is based on Almeida and Kaymak (2008). 

2 Adapted from Almeida and Kaymak (2008) Figure 1(a). 
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Figure 1: pdf v. crisp histogram 

 
2.2 Estimating a pdf using fuzzy histograms3 
 
In a similar fashion to the previous section, a pdf can be defined on a fuzzily partitioned sample 
space and approximated by a fuzzy histogram.4  
 
Let 

X be a sample space 
Ak , k = 1, …, K, be fuzzy partitions of X 

Ak
(x)µ be a membership function (MF) that describes Ak 

 
 Then, an estimate of the (fuzzy) column kf (x)  for fuzzy class Ak is: 

 
k

k
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Pr(A ) (x)
f (x)

(x)dx
∞
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µ
=

µ∫
 

 where: 
 

The numerator describes a probability weighted with a MF 
           .  
The denominator is a scaling factor representing the fuzzified size of class Ak . 

 
As with the crisp case, the complete pdf f(x) is approximated by summing the functions kf (x) :  
 

                                                 
3 This section is based on Almeida et al (2009). 

4 In addition to the method described here, a fuzzy histogram can be developed based on a probabilistic fuzzy 
system.  See, for example, van den Berg et al (2011) and Shapiro (2013). 
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K

k
k 1

f (x) f (x)
=

≈ ∑  

 
Figure 2 shows a representation between a pdf and its associated fuzzy histogram5, given the 
underlying MFs.  Notice, in Figure 2(b), that the number of MFs is equal to the number of crisp 
partitions and that the first and last MF are reverse-S and S-shaped, respectively.  As suggested 
by  Figure 2(a), the fuzzy histogram provides a better approximation of the pdf than the crisp 
histogram, because of the overlap of the MFs in the former.  
 
 

 
Figure 2: pdf v. fuzzy histogram 

 
2.3 Example: Fuzzy Histogram v. GARCH model 
 
Following Almeida et al (2009), the VaR based on a fuzzy histogram along the lines of that 
shown in Figure 2(a) might be compared with the VaR based on a GARCH (1,1) model6, using 

                                                 
5 Adapted from Almeida and Kaymak (2008) Figure 1. 

6 In a GARCH (1,1) model, the variance at period t + 1 depends on the variance and the realized returns at period t, 
that is, 2 2 2 2

t 1 t tr
+

σ = γ σ + α + β σ , where rt, the return at period t, is normally distributed with constant mean and 
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the Kupiec (1995) statistical test (see Appendix A).  A representation of the results is shown in 
Figure 37, which shows the number of exceptions that have occurred in the validation data at a 
95% confidence interval, for the 5 assets, S1, ..., S5.  As depicted, the non-rejection region is 
between 16 and 36 rejections, which only the fuzzy histogram model satisfies for all assets. 
 
 

 
Figure 3: Back-testing failure rates 

 
  
 

                                                                                                                                                             

variable variance (local volatility), σt = local volatility, σ =  global volatility, and α, β and γ are positive constants, 
with α + β + γ =1.  According to Hansen and Lunde (2005), a  GARCH(1,1)  model is very hard to beat in practice. 

7 Adapted from Almeida et al (2009) Table 6. 
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3. Estimating the VaR using a credibility measure 
 
Given perceived limitations of the possibility measure, Liu and Liu (2002) suggested replacing it 
with what they termed a credibility measure, which they defined as the average of its possibility 
and necessity measures.  This section is based on this credibility measure.  It begins with a 
definition of the credibility measure, and then discusses how a credibilistic VaR can be 
developed. 
 
3.1 The credibility measure8 
 
Let  
 

 (Θ, (Θ), Pos) be a possibility space and the set A ∈ (Θ) 
 
Pos(A) be a  possibility measure on Θ, where: 
 

Pos(A) is the possibility that A will occur 
Pos(Θ) = 1  (Normality) 
Pos(∅)  = 0 (Zero null set) 

i i i
i 1

Pos A sup Pos{A }
∞

=

 
= 

 


 for any collection {Ai} in (Θ)  (Maximality) 

 
Nec(A) be the necessity measure of  A (the impossibility of the occurrence of Ac), where: 
 

C

C

x A
Nec(A) 1 Pos(A ) 1 sup (x)

∈
= − = − µ  

 
Then, the credibility measure of A is defined by  
 

1
2Cr [Pos(A) Nec(A)]= +  

 
That is, the credibility of a fuzzy event is the average of its possibility and necessity. 
 
This characterization is not new.  The right hand side of the foregoing equation was previously 
discussed in Gaines (1976, p. 639) and Dubois and Prade (1988, p. 125). 
 
 
 
 
 

                                                 
8 This section is based on Liu and Liu (2002) and Liu (2004, Ch. 3).  See, also, Tanaka and Guo (1999, p. 134) and 
Bandemer (2006, p. 100). 
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3.2 Credibilistic VaR9 
 
Let  

ξ be a fuzzy variable. 
f (x, ξ ) is the loss associated with a decision vector x 

 
Then, the credibility of f(x,ξ ) not exceeding a threshold r is given by 
 

(x, r) Cr{f (x, ) r}Ψ = ξ ≤  
  
and the credibilistic VaR (CrVaR) is defined by: 
 

CrVaR inf{r | (x, r) }β = ∈ ψ ≥ β  
 
where β∈(0,1) is a prescribed confidence level. 
 
 
3.3 Credibilistic VaR based on a triangular fuzzy variable10 
 
As a specific application, consider a CrVaR based on a triangular fuzzy variable. 
 
Let  
 

ξ = (a, b, c) be a triangular fuzzy variable.  
 

Then the possibility, necessity and credibility measures are as shown in Table 1. 
 

Table 1: Possibility, necessity and credibility measures 

Measure Possibility Necessity Credibility 
 Pos{ x}ξ ≤  Nec{ x}ξ ≤  Cr{ x}ξ ≤  

x a≤  0 0 0  

a x b≤ ≤  
x a
b a

−
−

 0 
x a

2(b a)
−
−

 

b x c≤ ≤  1 x b
c b

−
−

 
c 2b x
2(c b)
− +

−
 

   x c≥  1 1 1 
 
 

                                                 
9 This section is based on Ma et al (2009). 

10 This section is based on Peng and Li (2009). 
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It follows that its CrVaR is: 
 

VaR

a 2(b a) , 0.5
( )

2b 2(c b) c, 0.5
+ − α α ≤

ξ α =  + − α − α >
 

 
This result can be validated by referring to Figure 4, where the red (dark) line represents the 
credibility distribution. 
 

 
Figure 4: Credibilistic VaR, given a TFN 

As indicated in the figure, an inflection point is at 0.5.  Below that, (x-a) / (b-a) = α / (1/2), 
where α represents the value of µ that coincides with x.  Since ξVaR(α) = x, the result follows.  
An analogous argument holds above 0.5. 
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4. Estimating the VaR using  Chebyshev's inequality11 
 
Chebyshev’s inequality provides a methodology for forecasting the VaR for a wide class of 
distributions.  This section begins with the presentation of a crisp VaR under Chebyshev's 
inequality, and then proceeds to the presentation of its counterpart, a fuzzy VaR. 
 
4.1 A crisp VaR under Chebyshev's inequality 
 
For any random variable with mean12, m, and finite variance, σ2, it follows from Chebyshev's 
inequality that:13 
 

2
1P(| X m | k ) 1
k

− ≤ σ ≥ −  

 
where |X - m| ≤ t denotes -t +m ≤ X ≤ t +m.  
  
For the basic case of a symmetric distribution:   
 

2 2

1 1 1P(X m k ) 1 1
2 k 2k

  ≤ − σ ≤ − − =    
 

 
where, for the tail probability (1-ε),  
 

2

1 1(1 ) k
2k 2(1 )

= − ε ⇒ =
− ε

. 

 
Since the VaR is the negative of the quantile, it follows that the 100 ε % VaR is: 
 

1VaR m
2(1 )ε = σ −

− ε
 

 
 
 
 
 

                                                 
11 This section is based on Appadoo et al (2015). 

12 Here, m, rather than µ, is used to represent the mean, in order to eliminate potential confusion with the MF symbol 
µ. 

13 Soong (2004, p. 86) 
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4.2 A fuzzy VaR under Chebyshev's inequality 
 
Extending the previous section to a fuzzy context, consider the forecast of a FVaR for a normally 
distributed portfolio. 
 
If  
 

The portfolio process follows a Gaussian AR(1) process of the form: 
  

t t 1 ty  m  (y   m)  a−− = φ − +  
 

The conditional distribution of yt is symmetric 
 

Then 
  

The one step ahead fuzzy forecast of 100 ε % VaR based on y1, ..., yn is given by  
  

n n
1VaR (1) m (y m).

2(1 )
= σ − − φ −

− ε
 

 
where, following Thavaneswarana et al (2009, p. 361):14 
 

* *
L U /2 /2ˆ ˆ ˆ ˆm( ) [m ( ),m ( )] [m Z (SE(m), m Z (SE(m))]α αα = α α = − +  

 
* *

L U /2 /2
ˆ ˆ ˆ ˆ( ) [ ( ), ( )] [ Z (SE( ), Z (SE( ))]α αφ α = φ α φ α = φ − φ φ + φ  

 
Finally, 
 

nVaR (1) = [VaRn+1,L , VaRn+1,U], which are given by: 
 

n 1,L L j n k

n 1,U U j n k

1VaR m ( ) Min[ ( )(y m ( ))], j, k {L, U}
2(1 )

1VaR m ( ) Max[ ( )(y m ( ))], j, k {L, U}
2(1 )

+

+

= σ − α − φ α − α ∈
− ε

= σ − α − φ α − α ∈
− ε

 

 
 
 

                                                 

14 Here, m signifies a triangular fuzzy number whose α-cuts are denoted by L U[m ( ), m ( )]m( ) = α αα , where 
mL(α) and mU(α) represents the infima and the suprema of the α-cuts. 
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5. Closing comments 
 
This article presented some preliminary observations about implementing a VaR model when 
parameters are linguistic.  The topics covered included a fuzzy histogram VaR model, a 
credibilistic VaR model, and a VaR model based on Chebyshev's inequality.  The discussion of 
these topics was far from exhaustive.  But if this overview provides a sense of how linguistic-
based VaR models can be addressed, it will have served its purpose. 
 
As far as future research is concerned, there are many interesting avenues that can be explored.  
In addition to extending the cross-section of FL methodologies that can be used to model a 
FVaR, a comprehensive analysis of each of them can be done, including broadening the universe 
of discourse to include fat-tailed distributions.15  Another dimension to be explored is the 
application of these FL methodologies to the conditional value-at-risk (CVaR) 16, that is, the 
expected loss, given that losses exceed the VaR.  While the VaR often appears to be the measure 
of choice among risk managers,17 there is considerable discussion regarding its limitations by the 
advocates of the CVaR.18  Finally, in this article the VaR was addressed in the context of a 
portfolio model.  As an alternative, the foregoing analysis could be applied from a loss model 
perspective, which focuses on a VaR in the right-hand tail of a loss distribution.19 
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Appendix A: Kupiec’s VaR Model validation 
 
Model verification is universally recognized as a key component of quantitative models that 
measure market risk.  Greenspan (1996, p. 502), in commenting on the issue, wrote that 
disclosure associated with the VaR "is enlightening only when accompanied by a thorough 
discussion of how the risk measures were calculated and how they related to actual 
performance.”  The VaR model validation test of Kupiec (1995) was developed in response to 
these types of concerns. 
 
Kupiec’s VaR Model validation test can be summarized as follows. 
 
Let: 

N = the number of exceptions 
T = the total number of observations 
c = the confidence level 
UC = unconditional coverage 
LRuc, the likelihood ratio statistic 

 
Then: 

T N N
uc

T N N

LR 2ln (1 c) c

N N2ln 1
T T

−

−

 = − − 
      + −           

 

 
The N/T ratio is asymptotically χ2-distributed, with 1 degree of freedom, under the null 
hypothesis of a valid VaR model, and the confidence regions are defined by the tail point of the 
log-likelihood ratio LRuc. 
 

 

 


