
 

 

Article from 
 
ARCH 2017.1 Proceedings  
 



Split-Atom Convolution for Probabilistic
Aggregation of Catastrophe Losses
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Abstract—We present a new, fast algorithm for computing
a probability density function of the sum of two independent
discrete random variables in the context of catastrophe loss
aggregation. The algorithm is a second-order approximation to
brute force convolution. Computing speed comes from the fact of
separating the atoms from main parts of two convolved distribu-
tions and from arithmetization (re-gridding) of the main parts. A
new 4-point re-gridding procedure is presented as an alternative
to classic linear and local moment matching methods. Since
processing large portfolios after catastrophic events requires
convolving loss distributions over millions of locations, we discuss
the impact of the order of convolutions on the second-order
moments of the resulting aggregate loss distribution. Further,
we analyze scalability of our method with support size and
investigate an extension based on Fast Fourier Transform. We
illustrate the utility of our algorithm by performing ground-
up loss aggregation using 100K distributions for hurricane and
earthquake peril.

Index Terms—Split-Atom Convolution, Loss Distributions,
Arithmetization, Loss Aggregation, Catastrophe Modeling

I. INTRODUCTION

The purpose of catastrophe modeling (known as CAT
modelling in the industry) is to anticipate the likelihood and
severity of catastrophe events from earthquakes and hurricanes
to terrorism and crop failure, so companies (and governments)
can appropriately prepare for their financial impact. Loss
estimates produced from CAT models can be deterministic for
a specific event or probabilistic from an ensemble of hypothet-
ical events [1]. The latter approach uses Monte -Carlo (MC)
techniques and physical models to simulate large ensemble
of events. [2]. To pass from the ensemble to financial risk,
the risk analysis sums up the event losses over the locations
or properties in a particular portfolio. The losses are usually
characterized by probability distributions. Here, a mixture of
Transformed Beta and two atoms at min/max loss is used
(see Fig.1). The atoms are not only an inherent feature inferred
from analyzing claims data, but also, a result of applying fi-
nancial terms – deductibles and limits composed into a variety
of insurance and re-insurance tiers/structures. Processing large
portfolios requires loss agrregation over millions of locatons.
Fast computing techniques are needed to make the analysis
feasible. Ideally, algorithms that (i) do not depend on large
sample size and the corresponding storage/computer memory
issues as MC methods in, e.g., [3], (ii) work well with irregular
supports (of the order of 300 points) as opposed to Fast Fourier

Transforms in [4] , and (iii) do not assume any parametric form
of distribution of sum of losses in [5], are preferred. Here, we
propose to estimate the compound distribution of CAT event
losses by Split-Atom convolution. This method is the second–
order moment approximation to the classical brute force (BF)
approach in [6].

The paper is organized as follows. First, we introduce the
Split-Atom convolution and new arithmetization (re–gridding)
algorithm. Then, we discuss a concept of the order of convo-
lutions which impacts the accuracy of preserving the second–
and higher–order moments of aggregate distribution of losses.
Finally, we show the results of an example of loss analysis by
convolving 100K distributions for hurricane and earthquake
peril.

Fig. 1: A representation of loss distribution as a mixture of
two atomic measures at min/max losses (blue) and main part
(green) modeled as Transformed Beta.

II. LOSS AGGREGATION VIA SPLIT-ATOM CONVOLUTIONS

The density function pS(s) of the sum S of two independent
discrete random variables X and Y characterizing CAT losses,
with the densities pX and pY respectively, can be calculated
as:

pS(s) = pX ⊕ pY =
∑
x

pX(x)pY (s− x) (1)

The most precise way of estimating (1) is BF convolution.
The procedure computes all cross-products of probabilities
and all cross-sums of losses. The complexity of this operation
is O(NxNy) where Nx and Ny are the number of points



Algorithm 1: Split-Atom Convolution: 9-products
Input : Two discrete probability density functions pX and pY with irregular supports:
x = {x1, x2, x2 + hx, x2 + 2hx, . . . , x2 + (Nx − 3)hx, xNx}; y = {y1, y2, y2 + hy, y2 + 2hy, . . . , y2 + (Ny − 3)hy, yNy} and
probabilities: pX(x) =

∑Nx
i=1 δ(x− xi)pX(xi); pY (y) =

∑Ny

j=1 δ(y − yi)pY (yj)

1 x(1) = {x1}; p(1)X (x) = δ(x− x(1))pX(x1)// Split the left atom of pX
2 x(2) = {x2, x2 + hx, x2 + 2hx, . . . , x2 + (Nx − 3)hx, xNx}; p

(2)
X (x) =

∑Nx−2
i=1 δ(x− x(2)i )p

(2)
X (x

(2)
i )

3 y(1) = {y1}; p(1)Y (y) = δ(y − y(1))pY (y1)// Split the left atom of pY
4 y(2) = {y2, y2 + hy, y2 + 2hy, . . . , y2 + (Ny − 3)hy, yNy}; p

(2)
Y (y) =

∑Ny−2
j=1 δ(y − y(2)j )p

(2)
Y (y

(2)
j )

5 Set Ns? // maximum number of points for discretizing convolution grid

6 hs? =
xNx+yNy−(x1+y1)

Ns?−1
// theoretical step size of main part of convolution grid s

7 hs = max(hx, hy, hs?)// final step size of main part of convolution grid s
8 if hs ≥ (x2 + y2 − x1 − y1) then // set irregular convolution grid
9 s = {x1 + y1, x2 + y2, x2 + y2 + hs, . . . , x2 + y2 + (Ns − 3)hs, xN + yM}

10 else
11 s = {x1 + y1, x2 + y2 − hs, x2 + y2, . . . , x2 + y2 + (Ns − 4)hs, xN + yM}
12 end
13 x(2,1)

′
= {x2, x2 + hs, x2 + 2hs, . . . , x2 + (Nx − 3)hs}// redefine main part of x(2) with hs

14 p
(2,1)′

X (x) =
∑N′

x
i=1 δ(x− x

(2,1)′

i )p
(2,1)′

X (x
(2,1)′

i )// re-grid p
(2)
X

15 y(2,1)
′
= {y2, y2 + hs, y2 + 2hs, . . . , y2 + (Ny − 3)hs}// redefine main part of y(2) with hs

16 p
(2,1)′

Y (y) =
∑N′

y

j=1 δ(y − y
(2,1)′

j )p
(2,1)′

Y (y
(2,1)′

j )// re-grid p
(2)
Y

17 x(2,2)
′
= {xNx}; p

(2,2)′

X (x) = δ(x− x(2,2)
′

i ) · p(2,2)
′

X (x
(2,2)′

i )// split the right atom of pX

18 y(2,2)
′
= {yNy}; p

(2,2)′

Y (y) = δ(y − y(2,2)
′

j ) · p(2,2)
′

Y (y
(2,2)′

j )// split the right atom of pY

19 B(1) = p
(2,1)′

X ⊕ p(2,1)
′

Y // BF convolution

20 B(2) = p
(1)
X ⊕ p

(1)
Y // ---’’---

21 B(3) = p
(1)
X ⊕ p

(2,1)′

Y // ---’’---

22 B(4) = p
(1)
X ⊕ p

(2,2)′

Y // ---’’---

23 B(5) = p
(1)
Y ⊕ p

(2,1)′

X // ---’’---

24 B(6) = p
(1)
Y ⊕ p

(2,2)′

X // ---’’---

25 B(7) = p
(2,1)′

Y ⊕ p(2,2)
′

X // ---’’---

26 B(8) = p
(2,2)
Y ⊕ p(2,1)

′

X // ---’’---

27 B(9) = p
(2,2)′

Y ⊕ p(2,2)
′

X // ---’’---
28 Regrid B(1−9) onto convolution grid s

Output: Discrete probability density function pS of independent sum S = X + Y with support defined as:
s = {s1, s2, s2 + hs, s2 + 2hs, . . . , s2 + (Ns − 3)hs, sNs} and the associated probabilities as:
pS(s) =

∑Ns
k=1 δ(s− sk)pS(sk), where sNs − [s2 + (Ns − 3)hs] ≤ hs, s2 − s1 ≤ hs, hs ≥ max(hx, hy).

discretizing pX and pY supports, respectively. An extra cost
NxNylog(NxNy) is due to redundancy removal [6]. Clearly,
it is not a good candidate for convolving CAT loss distri-
butions due to speed and storage reasons. Our solution to
(1) stems from an idea of separating two atoms at min/max
losses and arithmetizing (re-gridding) the main part of loss
distribution (green, Fig. 1). The former guarantees preser-
vation of min/max losses at different loss perspectives (e.g.
insured, insurer, re-insurer, FAC underwriter etc.) and the
latter replaces O(NxNy) with O(N ′

xN
′
y) where N ′

x < Nx

and/or N ′
y < Ny . Splitting the atoms and compacting the

main part of distributions results in a variety of convolution
algorithms depending on how the original and convolution
grids are defined and what computing speed and memory
requirements are. Algorithm 1 (9-product Split–Atom), is an
example. The original grids are non-uniform: spacing between
the atoms and main part is arbitrary. Convolution grid is
set the same way to assure that min/max losses are exactly

preserved. Depending on the application, other possibilities
are conceivable e.g. 9-products preserving not only min/max
losses but also their associated probabilities or splitting only
the right atom (4-product approach) for computing speed.

A. New re-gridding method

It follows from Section II-A that the computing speed
of Split-Atom convolution is induced by re-gridding. The
simplest way of re-gridding is linear binning [7], [8]. This
method, however, only preserves the mean of the re-gridded
distribution. If higher order moments are of concern, lo-
cal moment matching [9] should be used. This algorithm
sometimes produces negative probability mass. A linear op-
timization fix based on constrained simplex approach is
discussed in [10]. We propose faster and more accurate
alternative: 4-point re-gridding showed in Fig.2. Instead of
solving, 2-point based linear system in [10] the algorithm
redistributes the original probability mass not only to the
nearest neighboring points on new, coarse support, but also to



Fig. 2: 4-point re-gridding of p? at x? (upper panel) and
mitigation of possible negative probability mass of head pH
at xH (lower panel).

the head and tail points by recursively solving a linear system
in the upper panel of Fig.2. This guarantees preservation of
the second-order moments exactly (unlike [10]) at the price
of generating negative probabilities at the head and tail points
on the new grid. To mitigate this behavior, yet another linear
system is solved in the lower panel of Fig.2. If a distribution
undergoing the re-gridding is defined on sparse (˜10 points)
support, this method might fail. In that case we use simple
linear re-gridding [7], [8].

B. Order of convolutions

The re-gridding algorithm above, when combined with con-
volution, might introduce error in the second–order moments
of the distribution of the sum of losses. To minimize this
error, convolutions should be ordered in such a way that two
distributions to be convolved are defined on more or less the
same supports (equal max losses) with the same grid step
(hx ≈ hy in Algorithm 1). There are several possibilities we
considered: (i) sequential, where distributions are convolved
according to the order of locations in a particular portfolio, (ii)
sorted, where distributions are sorted in ascending order using
max losses, (iii) closest pair, where depth-first search method
is used to define a convolution tree and (iv) variation on the
theme of balanced multi–way number partitioning referred
to as the balanced largest–first differencing method (BLDM)
[11]. The latter is a powerful strategy that seeks to split a
collection of numbers (in this case max losses of the set of
distributions to be convolved) into subsets with (roughly) the
same cardinality and subset sum.

C. Use of the Fast Fourier Transform (FFT)

A further speed up of Split-Atom convolution can be
achieved by applying convolution theorem for the FFT to
convolve the main parts of pX and pY (line 19 in Algorithm
1) instead of using BF method. We can write:

p
(2,1)′

X ⊕ p
(2,1)′

Y (s)
FFT→ P

(2,1)′

X (ω)P
(2,1)′

Y (ω)
IFFT→ p

(2,1)′

S (s)
(2)

where ω represents frequency and IFFT stands for the
Inverse Fast Fourier Transform. For optimal performance,
implementation of (2) requires that probabilities p

(2,1)′

X and
p
(2,1)′

Y are defined on the same support discretized by a power
of 2 number of points. If this is not the case, we simply extend
the supports and zero-pad the probabilities.

III. RESULTS

To demonstrate the loss analysis with Split-Atom convo-
lution we performed the following experiment. We first re-
sampled (without replacement) 100K loss distributions for
hurricane and earthquake peril. The lookup tables with distri-
butions are typically comprised of 16K distributions character-
izing damage ratios (loss/replacement value) for a particular
peril. The distributions are stratified by the mean damage
ratio and defined on 64-point grid. Replacement values were
sampled from U(0, $5×106). The maximum number of points
discretizing convolution grid was 256.

Convolution           Order of Convolution sortedSequential sequential closestPair BLDM

Split-Atom: 4 products 9239 9238 784 921
Split-Atom: 9 products 9165 9164 782 923

Brute Force 6729 6724 576 590
Split-Atom: 4 products 0.73 0.69 1.32 1.07
Split-Atom: 9 products 0.86 0.83 1.44 1.21

Brute Force 7.72 7.66 16.83 18.03

Convolution           Order of Convolution sortedSequential sequential closestPair BLDM

Split-Atom: 4 products 314 296 190 190
Split-Atom: 9 products 303 285 190 190

Brute Force 190 190 190 190
Split-Atom: 4 products 0.78 0.72 1.72 1.44
Split-Atom: 9 products 1.25 1.19 2.13 1.69

Brute Force 22.97 22.67 55.77 64.28
Time(seconds)

SD (theoretical=190)

SD (theoretical=190)

Time(seconds)

Linear Regrid

4-point Regrid

Table 1: The results of convolvig 100K loss distributions
discretized on 64-point grid using three convolution methods:
Split–Atom 4–products, 9–products (Algorithm 1) and Brute
Force with linear (upper panel) and 4-point regridding (lower
panel) with different orders of convolutions. We compare com-
pute times and standard deviations (SD). Theoretical means
were preserved exactly in all cases. Both losses and their
probabilities were represented as doubles. Intel i7-4770 CPU
@ 3.40GHz architecture with 16GB RAM was used.

Then, we convolved the re-sampled distributions using
Split–Atom 4–products, 9–products (Algorithm 1) and BF
approach with linear and 4-point re-gridding. The various
solutions to the order of convolutions were implemented as
described in Section II-B. The results are shown in Table 1. It
is clear that 4-point re-gridding outperforms linear approach
in terms of mitigating the huge overestimation of theoretical
SD. This is particularly emphasized in the case of closest pair
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Fig. 3: Runtimes of 4-product Split-Atom (SA) convolution implemented using BF (solid line) and FFT (dashed line) as a
function of the size of convolution grid. The results are based on convolving 100K earthquake and hurricane loss distributions
with 4-point re-gridding and BLDM (left panel) vs. closest pair (right panel) order of convolutions. Intel i7-4770 CPU @
3.40GHz architecture with 16GB RAM was used.

and BLDM order of convolutions where the error in SD has
been eliminated. For our new re-gridding method, BLDM is
also computationally fastest strategy preserving the theoretical
second-order moments exactly when combined with 4-product
Split–Atom convolution. Figure 3 shows computing time of
Split-Atom convolution vs maximum number of points on
convolution grid (support size) for both BLDM (left) and
closest pair (right) order. The results confirm that Split-Atom
convolution using BF implementation is the fastest strategy for
CAT loss aggregation. This is due to the fact that, in practice,
the maximum number of points on convolution grid never
exceeds 256 for computing speed reasons. When application
(e.g. processing smaller portfolios) allows larger support size,
the use of closest pair order with FFT implementation is
recommended. The application of FFT gives a gain in speed
by a factor of about 1.5 for support size 4096 points. This
indicates that the majority of speed up comes from re-gridding
of main parts of two convolved distributions.

IV. CONCLUSIONS

In this paper we presented a new, fast method for convolv-
ing probability density functions characterizing losses from
CAT events. This method is a second-order approximation
to BF convolution. Using an example of loss aggregation
for 300K hurricane and earthquake perils we have shown
that Split-Atom convolution with 4-point re-gridding, executed
in BLDM and closest pair order, outperforms classical BF
approach. The latter is ∼ 30 times slower which makes it
infeasible for CAT modeling applications.
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