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Abstract

In this paper, we propose weighted fund style analysis as a better method to hedge market
risks of the variable annuities. Two typical weights, geometric and power weights, are consid-
ered. The optimal weight parameter, rolling window size, and benchmark indices are selected
based on the rolling window cross validation method. We provide models that can be easily
implemented by insurance and reinsurance companies. A real-world example demonstrates
that the algorithm significantly reduces the fund basis and improves the hedge effectiveness.
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1 Introduction

Variable annuities (VAs) are long-term and popular investment vehicles offered by life in-
surance companies. There are two phases (see [Haefeli (2013)]) in VAs, the accumulation
phase and the withdrawal phase. The policyholders may invest in mutual funds in a separate
account. The policyholders can purchase riders, such as Guaranteed Minimum Accumula-
tion Benefit (GMAB), Guaranteed Minimum Death Benefit (GMDB), Guaranteed Minimum
Income Benefit (GMIB) and Guaranteed Minimum Withdrawal Benefit (GMWB) by paying
rider fees. These GMxBs are linked to benefit bases. The benefit bases are typically set at
the higher of the current account value and previous year’s benefit base on the fund anniver-
sary. Therefore, the benefit bases typically never drop, but the account value could drop in
a bear market. When the stock market crashes, the insurance/reinsurance company has to
make up the difference between the account value and benefit base.

Key risks associated with VAs are insurance risks, such as longevity risk for GMIB, mor-
tality risks for GMDB, market risks, and policy holder behavior risks, such as persistency
risk and benefit utilization risk. To manage the insurance risks, insurance/reinsurance com-
panies need to perform experience studies and set assumptions on mortality. To manage the
policy holder risks, they need to monitor the lapse and utilization experience and reset the
lapse and utilization assumptions.

To mitigate the market risks, the insurance/reinsurance companies need to hedge the
market risks. Unlike Equity Index Annuities(EIA) (see [Bernar and Boyle (2011)]), there
are exchange traded contracts (future/options) for the index (typically S&P 500 index)
underlying the EIA. However, exchange traded contracts do not exist for mutual funds
underlying VAs. These VAs cannot be hedged from the market risks directly. Therefore, the
mutual fund returns must be mapped onto indices’ returns. Then the VAs could be hedged
using the corresponding indices. The fund style analysis (mapping model) is often used to
determine the fund’s exposure to these indices. The difference between fund returns and
benchmark returns used for the fund style analysis is called fund basis risk. Fourteen of the
largest North American Variable Annuity writers have average account value in-force of $
50 Billion according to the last survey by Towers Watson (2013). Because of a large account
value, the fund basis risk could be very large in dollar amount. Therefore, a better fund
mapping method is needed for insurance and reinsurance companies to manage the market
risk. This helps them to reduce the downturn risks and smooth out the earnings.

Fund style analysis was first introduced by William Sharpe at Stanford University. It
quickly became a powerful tool for analyzing mutual fund returns. The style analysis is
used to map the fund returns onto indices’ returns; thus the fund manager’s style (e.g.,
conservative, moderate or aggressive) could be determined. Moreover, the asset allocation
in the corresponding indices could also be obtained. In practice, exclusive indices, such as
large cap index, small cap index, developed market index, emerging market index and bond
index are often used. Since the fund manager typically cannot take a short position, all
the factors’ weights are non-negative. Due to budget constraints, the sum of these weights
is equal to one. Equal time weights are applied when the style analysis is performed by
Sharpe’s method. Therefore, it is a long-term average asset allocation over the given pe-
riod. It is well known that fund managers may change their style or asset allocation (see
[Henriksson and Kiernan]). Using these average weights to hedge the market risks of
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VAs may produce large basis risks due to large account values.
The basic fund style analysis provides a reasonably good model for fund mapping. How-

ever, there are some aspects of the model that can be improved so that it can better capture
the fund managers’ style. We summarize the recent work of Sharpe’s model extensions in
this paragraph. Bodson et al. (2010) considered varying the time weights in the benchmark
indices. A Kalman filter algorithm is used to select the appropriate benchmark indices. Nu-
merical examples show that on average the Kalman filter model has a smaller Mean Squared
Error (MSE) than the typical Sharpe’s model. However, one needs a special algorithm to
calibrate the constrained Kalman filter model proposed by Gupta and Raphael (2007). Sen
and Chaudhuri (2016) proposed analysis of the mapping of mutual fund based on time series
decomposition of the price movements. Gallagher et al. (2016) proposed a new fund map-
ping method where the benchmark indices are six equity style factors, three currency style
factors and an extra alpha factor that captures the fund manager’s performance. Fukui et.
al. (2016) proposed fund mapping using a state space model and Monte Carlo filter. They
estimate the parameters using a generalized simulated annealing. Raza and Mohsin (2015)
proposed a new method measuring the fund manager’s performance using modern style tilts.
Bubley and Burch (2016) investigated the benchmark drift by performing regression analy-
sis. Corbett (2016) investigated the style rotating funds using a dynamic state space factor
model and a holding based approach. Faff et al. ( 2012) compared the asset allocation
strategies across different style groups of the Australian managed and superannuation funds
using a rolling window method. Gallagher et al. (2015) proposed a style rotation model
to investigate the style factor timing. Buncic et al. (2015) proposed a new style profiling
approach using linear combinations of the shelf stock market indices.

2 Problem Formulation

Insurance and reinsurance companies need to hedge market risks of variable annuities. How-
ever, it is difficult to hedge the fund directly; therefore the fund return is mapped onto
benchmark indices. These indices represent different market sizes and values. They often
have different returns and volatilities. Suppose a fund’s monthly return FRt, t = 1, 2, . . . , N
is given. M indices’ monthly returns, IRt,i, t = 1, 2, . . . , N i = 1, 2, . . . ,M are also chosen.
William Sharpe proposed the following fund style analysis model

FRt =
M∑
i=1

IRt,iβi + εt, where εt is random noise (1)

M∑
i=1

βi = 1, βi ≥ 0 (2)

The asset allocation weights of indices, βi must be non-negative, since the fund manager
cannot take the short position. The fund manager also has a budget constraint, so the sum
of the weights must be one.

We introduce the following vectors, IRt = (IRt,1, IRt,2, . . . , IRt,M), β = (β1, β2, . . . , βM)T
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and 1 = (1, 1, . . . , 1). The model above has the compact form

FRt = IRtβ + εt (3)

1β = 1, β ≥ 0 (4)

To find the optimal weights of Sharpe’s model, we need to minimize the sum of squared
errors

arg min
β

N∑
t=1

(FRt − IRtβ)2 (5)

1β = 1, β ≥ 0 (6)

Instead of using equal weights for fund returns from t = 1, 2, . . . , N , we propose a
weighted linear regression model. In our hedging model, there is a greater emphasis on
the latest assets allocation of benchmark indices . We propose two typical weights that
are easier to calculate and use. First, we consider the geometric progression weights (see
[Steiner and Mackay (2014)])

wt =
λt−1 ∗ (1− λ)

1− λN
,where λ ≥ 1, t = 1, 2, . . . , N (7)

It is easy to see that the sum of the indices weights is equal to 1. If λ = 1, then wt = 1
N

.
By L’Hospital’s Rule, we recover Sharpe’s model.

Second, to the best our knowlege, we also first propose the power weights,

wt =
tk∑N
j=1 j

k
,where k ≥ 0, t = 1, 2, . . . , N (8)

It is easy to see that the sum of the weights is equal to 1. If k = 0, then wt = 1
N

, and we
recover Sharpe’s model too.

Introducing the following notations: mutual fund returns, Y = (FR1, FR2, . . . , FRN)T ,
indices returns, X = (IR1, IR2, . . . , IRN)T and the fund weights, W = diag(w1, w2, . . . , wN),
we propose the following weighted factor model:

arg min
β

(Y −Xβ)TW (Y −Xβ) (9)

1β = 1, β ≥ 0 (10)

It is well known that the above optimization problem has no closed form solution due to
the inequality of the constraints. This quadratic programming problem may be solved using
one of the various algorithms, such as the interior point method, active set method, conjugate
gradient method or dual method of Goldfarb and Idnani (see [Goldfarb and Idnani (1983)]).
We solve this quadratic optimization problem by using the open source R language (see
[R Core Team (2016)]) package quadprog (see [Weingessel (2013)]) with the following
setup.

arg min
β

1/2βTDβ − dTβ (11)

ATβ ≥ b0 (12)
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where

D = 2XTWX (13)

d = 2XTWY (14)

A = [1 IM×M ] (15)

b0 = [1 01×M ]T (16)

2.1 Data

To illustrate our weighted factor model, we use public data from Yahoo Finance (http://finance.yahoo.com/).
The TIAA-CREF Lifecycle 2035 Fund (ticker:TCLRX) is used to decompose into the bench-
mark indices. The following benchmarks are used: The benchmark indices in table 1 repre-

Index Ticker Country/Region
S&P500 GSPC US large cap index

RUSSELL 2000 Index RUT US small cap index
Nikkei 225 N225 Japan equity index

Hang Seng Idex HSI Hongkong equity index
SSE Composite Index SSEC Shanghai equity index

CAC 40 FCHI French equity index
DAX GDAXI German equity index

iSharesCore US Aggregate Bond AGG US bond index

Table 1: Benchmark Indices

sent equity and bond returns and covers different countries and, market capitalization. The
monthly index level from December 2010 to November 2016 is used for the analysis. The
continuous monthly returns are calculated by using the following formula:

FRt = ln

(
Index levelt

Index levelt−1

)
(17)

In addition, the following simple return may also be used.

FRt =
Index levelt

Index levelt−1

− 1 (18)

It is easy to show that the simple return and continuous return are very close to each
other by Taylor’s formula (see [Thomas et al. (2013)]) due to the small monthly returns.

3 Model selection

Model selection plays a central role in the fund mapping analysis. There are several classical
methods to select statistical models such as cross validation, bootstrap method and subset
selection method (see chapter 5 and 6 of [James et al. (2016)]). The weighted fund style
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model depends on three parameters: the weight matrix (λ and k), rolling windows length
(N), and Benchmark indices. We can test the model by choosing the optimal weight matrix,
rolling window length and benchmark indices.

The goal of our proposed model is to generate better mapping by changing the various
parameters. The weight matrix controls the time weights of the observations. We may
put larger weights on the most recent observation and determine wheter it generates better
mapping. Alternatively, we may equally distribute the weights by setting λ = 1 or k = 0.

The rolling windows also play a central role in the analysis. If it is too short, the model
may fit the noise instead of the trend. On the other hand, if it is too long the model
captures the long term average, but may not capture the fund manager’s latest style and
asset allocation. This is important because the fund management and strategy may change
over time.

In our proposed model, the more benchmark indices used, the better in sample fit that
can be achieved. However, as noted above the model may be subject to over fitting. When
it is used to forecast, it may have large basis risks (out of sample error ). When the options
or futures based on the fund mapping are used to hedge the market risks, these mismatches
pose great financial risks to the VAs.

To choose the parameters and predictors, we use a rolling window method that is similar
to the cross validation method (see chapter 5 of [James et al. (2016)]). The cross valida-
tion method randomly splits the data into two data sets, the training set and test set. The
model is calibrated using the training set. Then the test error, typically Mean Squared Error
(MSE), can be computed based on the test set. The MSE of the test set is typically larger
than that of the training set since the model does not have access to the test data. The goal
is to strike a balance between in sample fit and out of sample fit. In practice, the leave one
out cross validation (LOOCV) and k-fold cross validation are commonly used.

It is well known that fund returns have volatility clustering property (see [Cont(2005)]).
Large returns typically flow large returns. Small returns typically follow small returns. When
we perform fund mapping analysis, we use the time series of fund return data. If we use
the LOOCV or K-fold cross validation method, we essentially rearrange the date of the data
by randomly dividing the data set into training set and test set. The volatility clustering
property may be violated. Therefore it doesn’t reflect the nature of the data and hedging
business.

The rolling windows method is very similar to the LOOCV method. The training set and
test set keep the volatility clustering property. We calibrate the model based on the training
set from t = 1, 2 . . . , N and compute the MSE, mse1, based on test data at t = N + 1. Next,
we calibrate the model using the training set from t = 2, 3, . . . , N+1 and compute the MSE,
mse2 based on test data at t = N + 2. Finally we calibrate the model using the training
set from t = k, k + 1, . . . , N + k − 1 and compute the MSE, msek based on test data at
t = N + k. The MSE is computed by the following formula

MSE =

∑k
i=1msei
k

(19)
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3.1 Optimal Fund Weight

We choose the optimal fund weight by fixing the rolling window size and the benchmark
indices. For example, the rolling window size is set to be 36. We use all the benchmark
indices listed in Table 1. We have 72 monthly data points from December 2010 to November
2016. By the rolling window validation method proposed above, we compute the MSE of
the test errors based on 36 test errors.

For geometric weights, we let λ increment from 0.1 to 2 with step size=0.1. We plot the
MSE at each λ in Figure 1 on page 7.
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0.000075

0.000100

0.000125

0.5 1.0 1.5 2.0

Lambda
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S

E

Figure 1: MSE of Geometric Weights

As expected that the MSE is decreasing when the weights of the latest observation are
increasing at the beginning . It has the minimum MSE with λ = 1, i.e. weighted equally.
Notably, the MSE is increasing later due to the heavy weight at the last few observations. We
summarize the results in Table 2 on page 8. As we expected, when the geometric weights
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λ MSE
Min 1 3.462537× 10−5

Max 0.1 1.295376× 10−4

Mean NA 7.195641× 10−5

STD NA 2.802368× 10−5

Table 2: Summary of MSE of Geometric Weights

k MSE
Min 0.6 3.370327× 10−5

Max 5 4.296243× 10−5

Mean NA 3.758864× 10−5

STD NA 3.129359× 10−6

Table 3: Summary of MSE of Power Weights

exponentially grow, the corresponding test errors (MSE) have a wide range with a large
standard deviation (STD).

Similarly, for power weights, we iterate k from 0 to 5 with step size 0.1. We plot the test
errors at each k in Figure 2 on page 14.

Our model shows that the MSE decrease first, then increase later when the weights of the
latest observation is increasing. It has the minimum MSE with k = 0.6. We summarize the
results in Table 3 on page 8. Note that the MSE of power weights has a narrow range with
small STD due to the slow change of the weights of the observations. The MSE of power
weights is more stable than that of geometric weights. The optimal weights occurs when the
power weight k = 0.6 is selected. This value performs best for the mapping.

3.2 Optimal Rolling Window Size

We choose the optimal rolling window size by fixing fund weights and benchmark indices.
We use the power weight with k = 0.6. We use all the benchmark indices listed above. By
the rolling window cross validation method proposed above, we compute the corresponding
MSE of the test errors.

We iterate the rolling window size from 12 to 60 with a step size of 1. We plot the test
errors at each rolling window size in Figure 3 on page 15.

When the rolling window size is small, the model tends to fit the noises, so the cross
validation errors are large. On the other hand, when the rolling window size is large, the
model tends to fit the trend instead of noises, therefore it has smaller test errors. But when
the windows size is too large, there are few test errors available. In these cases, the MSE
tend to have large variation. We summarize the results in the Table 4 on page 9.
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Rolling Window Size MSE
Min 36 3.370327× 10−5

Max 12 5.207435× 10−5

Mean NA 3.839232× 10−5

STD NA 3.78192× 10−6

Table 4: Summary of MSE of Rolling Windows

3.3 Optimal Benchmark Indices

We find the optimal benchmark indices by fixing fund weight matrix and rolling window
size. We let k = 0.6 and rolling window size = 36. By the rolling window validation method
proposed above, we compute the corresponding MSE of the cross validation errors. There
are 8 indices available. We plot the test errors at each combination of indices in Figure 4
on page 16. The Y-axis shows the MSE. The x-axis shows the MSE of each one-index cases
(8 cases), of each two-index case (28 cases), and so on up to the MSE of the eight-index (1
case). There are 28 − 1 = 255 cases. The corresponding x-axis values are from 1 to 255.

When few benchmark indices are used, the MSE is larger since the fund mapping fails to
capture the fund managers’ style. When more benchmark indices are used, the MSE tends
to become smaller as we expected. The optimal benchmark indices are GSPC, RUT, HIS,
FCHI and AGG. It covers equities (GSPC, RUT, HIS, FCHI) and bond index (AGG). It has
large cap (GSPC) and small cap (RUT). It also has domestic equity (GSPC and RU) and
international equities (HIS and FCHI). Care must be taken, when selecting the benchmark
indices for mapping. The mutual fund prospectus along with business judgment should also
be used to choose the best indices instead of looking only at test errors.

3.4 Optimal Fund Weight, Rolling window Size and Benchmark
Indices

The optimal solutions obtained above are local optimal solutions since the other parameters
are fixed during the search. The local optimal solution is found in one dimensional space. AS
such, there is only one loop to search it in the R codes. To find the global optimal solution,
we need to perform a global search in three parameter dimensional spaces, including weight
parameter, window size, and benchmark indices. The window sizes are natural numbers
only. The benchmark indices are a combination problem. There is no closed form solution
available. We must perform a brute-force search in three dimensional spaces by using nested
loops in R codes. The parameter spaces are as follows:

• The geometric weight parameters, λ is from 0.1 to 2 with step size 0.1;

• The power weight parameters, k is from 0 to 5 with step size 0.1;

• The benchmark indices: there are 8 indices (GSPC, RUT, GDAXI, N225, HIS, SSEC,
FCHI, AGG) to choose.

• The rolling window size, N is from 12 to 60 with step size 1.
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Rank Window Size Benchmark Indices Weight Parameter MSE
1 58 GSPC, GDAXI, HIS, FCHI, AGG power: k = 0.4 1.61185× 10−5

2 58 GSPC, GDAXI, HIS, SSEC, FCHI, AGG power: k = 0.4 1.61185× 10−5

3 58 GSPC, GDAXI, HIS, SSEC, FCHI, AGG power: k = 0.3 1.61556× 10−5

4 58 GSPC, GDAXI, HIS, FCHI, AGG power: k = 0.3 1.61556× 10−5

5 58 GSPC, GDAXI, HIS, SSEC,FCHI, AGG power: k = 0.5 1.61680× 10−5

Table 5: Summary of MSE of Global Solution

Using the available hardware (ThinkPad laptop with 2.40 GHz CPU and 32GB RAM
with Windows 7 operating system), it only takes about three seconds to get the local optimal
solution. Whereas, it takes about 22 hours to compute the global optimal solution.

We summarize the top 5 models in Table 5 on page 10. We found that the global optimal
solution significantly reduce the test errors. However, it is not easy to plot the graph in four
dimensional space. We first fix the benchmark indices ( GSPC, GDAXI, HIS, FCHI, AGG)
and weight method (power and geometric), then plot the test errors against the window size
and weight parameter. The MSE of geometric weights have a larger variation due to the
geometric growth of the fund weights (Figure 5). The optimal values of MSE occurs around
(λ = 0), i.e. weighted equally. On the other hand, the MSE of power weights has a smaller
variation (Figure 6). The optimizing parameters in the weighted model generate a map that
coincides with the trend.

The top 5 models have similar MSE values. To select the best model for hedging VAs, we
also need to consider the following factors. The fund prospectus ([MorningStar]) shows that
the TIAA-CREF Lifecycle 2035 fund covers the US Equity(GSPC), international equities
(GDAXI, FCHI), emerging market equities (SSEC, HSI) and bonds (AGG). Another factor
to consider is the need to explain the model to management and auditors. Based on these
factors, we recommend that using the 5th model since it covers a wide range of equities and
bonds. It is also easier to explain the model to management and auditors since the weight
is
√
i that is the square root of the observation index.

4 Conclusion

Insurance and reinsurance companies have large blocks of VA business. The market risks
need to be hedged to smooth out the earnings. To hedge these products, Sharpe’s fund
style analysis is often performed. Instead of using equal time weights for fund mapping, we
propose weighted fund style analysis. Two types of weights, power and geometric weights are
considered. Besides the weight matrix, we also consider the optimal benchmark indices and
the optimal rolling window size. Our goal is to reduce the fund basis risk. The fund basis
risk is the difference between fund return and approximate returns using benchmark indices.
To select the optimal parameters, we use the rolling window cross validation method. The
model is calibrated using the training data set. The mean squared error is calculated using
the test data. We choose the optimal parameters that produce the smallest cross validation
errors.
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These algorithms are easy to implement. The hedging team may run the global optimiza-
tion monthly to get the exposures to the benchmark indices and model parameters. They
may also need to monitor the risk exposures weekly by using the local algorithms. If there
are large deviations of the weights of the benchmark indices, they may need to readjust the
exposure to mitigate the market risks.
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Figure 2: MSE of Power Weights
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Figure 3: MSE of Rolling Window Size
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